WORKSHOP CALCULATION & SCIENCE

(NSQF)

1st YEAR

(As per Revised Syllabus July 2022)

Spinning Technician

DIRECTORATE GENERAL OF TRAINING
MINISTRY OF SKILL DEVELOPMENT & ENTREPRENEURSHIP
GOVERNMENTOF INDIA

NATIONAL INSTRUCTIONAL MEDIA INSTITUTE, CHENNAI

Workshop Calculation & Science Spinning Technician - 1st Year NSQF As per Revised Syllabus July 2022

Developed & Published by

National Instructional Media Institute

Post Box No.3142 Guindy, Chennai - 600032 INDIA Email: chennai-nimi@nic.in

Email: chennai-nimi@nic.ir Website: www.nimi.gov.in

Copyright © 2023 National Instructional Media Institute, Chennai

First Edition: March 2023 Copies: 1000

Rs: 65/-

All rights reserved.

No part of this publication can be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission in writing from the National Instructional Media Institute, Chennai.

FOREWORD

The Government of India has set an ambitious target of imparting skills one out of every four Indians, to help them secure jobs as part of the National Skills Development Policy. Industrial Training Institutes (ITIs) play a vital role in this process especially in terms of providing skilled manpower. Keeping this in mind, and for providing the current industry relevant skill training to Trainees, ITI syllabus has been recently updated with the help of comprising various stakeholder's viz. Industries, Entrepreneurs, Academicians and representatives from ITIs.

The National Instructional Media Institute (NIMI), Chennai, has now come up with instructional material to suit the revised curriculum for **Workshop Calculation & Science - Spinning Technician 1**st **Year** NSQF (Revised 2022) under CTS will help the trainees to get an international equivalency standard where their skill proficiency and competency will be duly recognized across the globe and this will also increase the scope of recognition of prior learning. NSQF trainees will also get the opportunities to promote life long learning and skill development. I have no doubt that with NSQF the trainers and trainees of ITIs, and all stakeholders will derive maximum benefits from these IMPs and that NIMI's effort will go a long way in improving the quality of Vocational training in the country.

The Executive Director & Staff of NIMI and members of Media Development Committee deserve appreciation for their contribution in bringing out this publication.

Jai Hind

Director General (Training), Ministry of Skill Development & Entrepreneurship, Government of India.

New Delhi - 110 001

PREFACE

The National Instructional Media Institute (NIMI) was set up at Chennai, by the Directorate General of Training, Ministry of skill Development and Entrepreneurship, Government of India, with the technical assistance from the Govt of the Federal Republic of Germany with the prime objective of developing and disseminating instructional Material for various trades as per prescribed syllabus and Craftsman Training Programme (CTS) under NSQF levels.

The Instructional materials are developed and produced in the form of Instructional Media Packages (IMPs), consisting of Trade Theory, Trade Practical, Test and Assignment Book, Instructor Guide. The above material will enable to achieve overall improvement in the standard of training in ITIs.

A national multi-skill programme called SKILL INDIA, was launched by the Government of India, through a Gazette Notification from the Ministry of Finance (Dept of Economic Affairs), Govt of India, dated 27th December 2013, with a view to create opportunities, space and scope for the development of talents of Indian Youth, and to develop those sectors under Skill Development.

The emphasis is to skill the Youth in such a manner to enable them to get employment and also improve Entrepreneurship by providing training, support and guidance for all occupation that were of traditional types. The training programme would be in the lines of International level, so that youths of our Country can get employed within the Country or Overseas employment. The **National Skill Qualification Framework** (**NSQF**), anchored at the National Skill Development Agency(NSDA), is a Nationally Integrated Education and competency-based framework, to organize all qualifications according to a series of **levels of Knowledge**, **Skill and Aptitude.** Under NSQF the learner can acquire the Certification for Competency needed at any level through formal, non-formal or informal learning.

The **Workshop Calculation & Science -** Spinning Technician 1st Year NSQF (Revised 2022) under CTS is one of the book developed by the core group members as per the NSQF syllabus.

The **Workshop Calculation & Science** - Spinning Technician 1st Year NSQF (Revised 2022) under CTS as per NSQF is the outcome of the collective efforts of experts from Field Institutes of DGT, Champion ITI's for each of the Sectors, and also Media Development Committee (**MDC**) members and Staff of **NIMI**. NIMI wishes that the above material will fulfill to satisfy the long needs of the trainees and instructors and shall help the trainees for their Employability in Vocational Training.

NIMI would like to take this opportunity to convey sincere thanks to all the Members and Media Development Committee (MDC) members.

Chennai - 600 032

EXECUTIVE DIRECTOR

ACKNOWLEDGEMENT

The National Instructional Media Institute (NIMI) sincerely acknowledge with thanks the co-operation and contribution of the following Media Developers to bring this IMP for the course **Workshop Calculation & Science - Spinning Technician 1**st **Year** as per NSQF Revised 2022.

MEDIA DEVELOPMENT COMMITTEE MEMBERS

Shri. M. Sangara pandian - Training Officer (Retd.)

CTI, Govt. of India, Guindy, Chennai - 32.

Shri. G. Sathiamoorthy - Jr. Training Officer - SG (Retd.)

Govt I.T.I, Trichy, DET - Tamilnadu.

NIMI CO-ORDINATORS

Shri. Nirmalya Nath - Deputy General Manager,

NIMI, Chennai - 32.

Shri. G. Michael Johny - Manager,

NIMI, Chennai - 32.

NIMI records its appreciation of the **Data Entry**, **CAD**, **DTP Operators** for their excellent and devoted services in the process of development of this IMP.

NIMI also acknowledges with thanks, the efforts rendered by all other staff who have contributed for the development of this book.

INTRODUCTION

The material has been divided into independent learning units, each consisting of a summary of the topic and an assignment part. The summary explains in a clear and easily understandable fashion the essence of the mathematical and scientific principles. This must not be treated as a replacement for the instructor's explanatory information to be imparted to the trainees in the classroom, which certainly will be more elaborate. The book should enable the trainees in grasping the essentials from the elaboration made by the instructor and will help them to solve independently the assignments of the respective chapters. It will also help them to solve the various problems, they may come across on the shop floor while doing their practical exercises.

The assignments are presented through 'Graphics' to ensure communications amongst the trainees. It also assists the trainees to determine the right approach to solve the problems. The required relevent data to solve the problems are provided adjacent to the graphics either by means of symbols or by means of words. The description of the symbols indicated in the problems has its reference in the relevant summaries.

At the end of the exercise wherever necessary assignments, problems are included for further practice.

Time allotment:

Duration of 1st Year: 20 Hrs

Time allotment for each title of exercises has been given below. **Workshop Calculation & Science - Spinning Technician** 1st Year NSQF Revised Syllabus 2022.

S.No	Title	Exercise No.	Time in Hrs
1	Unit, Fractions	1.1.01 - 1.1.07	4
2	Square root, Ratio and Proportions, Percentage	1.2.08 - 1.2.13	6
3	Material Science	1.3.14 & 1.3.15	4
4	Heat & Temperature and Pressure	1.4.16	2
5	Basic Electricity	1.5.17	2
6	Trigonometry	1.6.18 & 1.6.19	2
		Total	20 Hrs

LEARNING / ASSESSABLE OUTCOME

On completion of this book you shall be able to

- Demonstrate basic mathematical concept and principles to perform practical operations.
- Understand and explain basic science in the field of study.

CONTENTS

Exercise No.	Title of the Exercise	Page No.
	Unit, Fractions	
1.1.01	Unit, Fractions - Classification of unit system	1
1.1.02	Unit, Fractions - Fundamental and Derived units F.P.S, C.G.S, M.K.S and SI units	2
1.1.03	Unit, Fractions - Measurement units and conversion	3
1.1.04	Unit, Fractions - Factors, HCF, LCM and problems	8
1.1.05	Unit, Fractions - Fractions - Addition, substraction, multiplication & division	9
1.1.06	Unit, Fractions - Decimal fractions - Addition, subtraction, multiplication & division	12
1.1.07	Unit, Fractions - Solving problems by using calculator	15
	Square root, Ratio and Proportions, Percentage	
1.2.08	Square root, Ratio and Proportions, Percentage - Square and square root	19
1.2.09	Square root, Ratio and Proportions, Percentage - Simple problems using calculator	20
1.2.10	Square root, Ratio and Proportions, Percentage - Applications of pythagoras theorem and related problems	21
1.2.11	Square root, Ratio and Proportions, Percentage - Ratio and proportion	23
1.2.12	Square root, Ratio and Proportions, Percentage - Ratio and proportion - Direct and indirect proportions	25
1.2.13	Square root, Ratio and Proportions, Percentage - Percentage	28
	Material Science	
1.3.14	Material science - Types of metals, types of ferrous and non ferrous metals	30
1.3.15	Material science - Introduction of iron and cast iron	32
	Heat & Temperature and Pressure	
1.4.16	Heat & Temperature and Pressure - Concept of heat and temperature, effects of heat, difference between heat and temperature, boiling point & melting point of different metals and non-metals	35
	Basic Electricity	
1.5.17	Basic electricity - Introduction and uses of electricity, molecule, atom, how electricity is produced, electric current AC,DC their comparison, voltage, resistance and their units	37
	Trigonometry	
1.6.18	Trigonometry - Measurement of angles	42
1.6.19	Trigonometry-Trigonometrical ratios	44

SYLLABUS

1st Year

Workshop Calculation & Science - Spinning Technician Revised syllabus July 2022 under CTS

S.No.	Title	Time in Hrs
I	 Unit, Fractions Classification of Unit System Fundamental and Derived Units F.P.S, C.G.S, M.K.S and SI Units Measurement Units and Conversion Factors, HCF, LCM and Problems Fractions – Addition, Subtraction, Multiplication & Division Decimal Fractions – Addition, Subtraction, Multiplication & Division 	4
II	 7 Solving Problems by using calculator Square root, Ratio and Proportions, Percentage 1 Square and Square root 2 Simple problems using calculator 3 Applications of Pythagoras theorem and related problems 4 Ratio and Proportion 5 Ratio and Proportion - Direct and Indirect proportions 6 Percentage 	6
III	Material Science 1 Types of metal, types of ferrous and non ferrous metals 2 Introduction of iron and cast iron	4
IV	Heat & Temperature and Pressure 1 Concept of heat and temperature, effects of heat, difference between heat and temperature, boiling point & melting point of different metals and non-metals	2
V	Basic Electricity 1 Introduction and uses of electricity, molecule, atom, how electricity is produced, electric current AC, DC their comparison, voltage, resistance and their units	2
VI	Trigonometry 1 Measurement of angles 2 Trigonometrical ratios	2
	Total	20

Unit, Fractions - Classification of unit system

Necessity

All physical quantities are to be measured in terms of standard quantities.

Unit

A unit is defined as a standard or fixed quantity of one kind used to measure other quantities of the same kind.

Classification

Fundamental units and derived units are the two classifications.

Fundamental units

Units of basic quantities of length, mass and time.

Derived units

Units which are derived from basic units and bear a constant relationship with the fundamental units. E.g. area, volume, pressure, force etc.

Systems of units

- F.P.S system is the British system in which the basic units of length, mass and time are foot, pound and second respectively.
- C.G.S system is the metric system in which the basic units of length, mass and time are centimeter, gram and seconds respectively.
- M.K.S system is another metric system in which the basic units of length, mass and time are metre, kilogram and second respectively.
- S.I. units are referred to as Systems International units which is again of metric and the basic units, their names and symbols are as follows.

Fundamental units and derived units are the two classifications of units.

Length, mass and time are the fundamental units in all the systems (i.e) F.P.S, C.G.S, M.K.S and S.I. systems.

Example

Length: What is the length of copper wire in the roll, if the roll of copper wire weighs 8kg, the dia of wire is 0.9cm and the density is 8.9 gm/cm³?

Solution

mass of copper wire in the roll = 8kg (or)8000grams Dia of copper wire in the roll = 0.9cm Density of copper wire = 8.9 gm/cm³

Area of cross section of copper wire

$$=\frac{\pi d^2}{4} = \frac{\pi \times (0.9^2)}{4} = 0.636cm^2$$

Volume of copper wire

$$= \frac{\text{Mass of copper wire}}{\text{Density of copper wire}} = \frac{8000 \text{grams}}{8.9 \text{ gm/cm}^3} = 898.88 \text{cm}^3$$

Length of copper wire

$$= \frac{\text{Volume of copper wire}}{\text{Area of cross section of copper wire}} = \frac{898.88 \text{cm}^3}{0.636 \text{cm}^2}$$
$$= 1413.33 \text{ cm}$$

Length of copper wire =1413cm.

Time: The S.I. unit of time, the second, is another base units of S.I., it is defined as the time interval occupied by a number of cycles of radiation from the calcium atom. The second is the same quantity in the S.I. in the British and in the U.S. systems of units.

Fundamental units of F.P.S, C.G.S, M.K.S and S.I

S.No.	Basic quantity	Britishun	its	Metric units				International units	
		F.P.S	Symbol	C.G.S	Symbol	M.K.S	Symbol	S.I Units	Symbol
1	Length	Foot	ft	Centimetre	cm	Metre	m	Metre	m
2	Mass	Pound	lb	Gram	g	Kilogram	kg	Kilogram	Kg
3	Time	Second	S	Second	S	Second	S	Second	s
4	Current	Ampere	А	Ampere	Α	Ampere	Α	Ampere	Α
5	Temperature	Fahrenheit	°F	Centigrade	°C	Centigrade	°C	Kelvin	K
6	Light intensity	Candela	Cd	Candela	Cd	Candela	Cd	Candela	Cd

Workshop Calculation & Science - Spinning Technician

Unit, Fractions - Fundamental and Derived units F.P.S, C.G.S, M.K.S and SI units

Derived units of F.P.S, C.G.S, M.K.S and SI system

S.No	Physical quantity	Britishunits		Metr	Metric units			International units	
		FPS	Symbol	SBO	Symbol	MKS	Symbol	SIUnits	Symbol
~	Area	Squarefoot	ft²	Square centimetre	cm ²	Squaremetre	m^2	Square metre	m ²
7	Volume	Cubic foot	ft3	Cubic centimetre	cm³	Cubic metre	m ₃	Cubic metre	m ₃
က	Density	Pound per cubic foot	lb/ft³	Gram per cubic centimetre	g/cm³	Kilogram per cubic metre	kg/m³	Kilogram per cubic metre	Kg/m³
4	Speed	Foot per second	ft/s	Centimetrepersecond	cm/sec	Metre per second	m/sec	Metre per second	m/sec
2	Velocity (linear)	Foot per second	ft/s	Centimetrepersecond	oes/wo	Metre per second	m/sec	Metre per second	m/sec
9	Acceleration	Foot per square	ft/s ²	Centimetreper	cm/sec ²	Metre per square	m/sec ²	Metre per square	m/sec ²
		second		square second		second		second	
7	Retardation	Foot per square Second	ft/s²	Centimetre per square second	cm/sec ²	Metre per square second	m/sec ²	Metre square second	m/sec ²
8	Angularvelocity	Degree per second	Deg/sec	Radianpersecond	rad/sec	Radianpersecond	rad/sec	Radian per second	rad/sec
6	Mass	Pound (slug)	q	Gram	ß	Kilogram	kg	Kilogram	kg
10	Weight	Pound	ql	Gram	б	Kilogramweight	kg	Newton	Z
11	Force	Pounds	lbf	dyne	dyn	Kilogram force	kgf	Newton	N(kgm/sec ²)
12	Power	Foot pound per second	ft.lb/sec	Gram.centimetre/sec	g.cm/ sec	kilogram metre per second	kg.m/ sec	-	
		Horsepower	ф	Erg per second		watt	>	watt	W(J/sec)
13	Pressure, Stress	Pound per square inch	lb/in²	Gram per square centimetre	g/cm²	Kilogram per square metre	kg/m²	Newton per square metre	N/m²
14	Energy, Work	Foot.pound	ft.lb	Gram centimetre	g.cm	Kilogram metre	kg.m	joule	J(Nm)
15	Heat	British thermal unit	ВТЛ	calorie	Cal	joule	ſ	joule	J(Nm)
16	Torque	Pound force foot	lbf.ft	Newton millimetre	N mm	Kilogram metre	kg.m	Newton metre	Nm
17	Temperature	DegreeFahrenheit	↓ °	Degree Centigrade	၁့	Kelvin	¥	Kelvin	쏘

Units and abbreviations

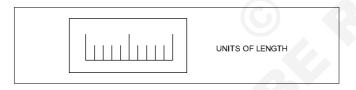
Quantity	Units	Abbreviation of unit
Calorificvalue	kilojoules per kilogram	kJ/kg
Specific fuel consumption	kilogram per hour per newton	kg/hr/N
Length	millimetre, metre, kilometre	mm, m, km
Mass	kilogram, gram	kg, g
Time	seconds, minutes, hours	s, min, h
Speed	centimetre per second, metre per second kilometre per hour, miles per hour	cm/s, m/s km/h, mph
Acceleration	metre-per-square second	m/s ²
Force	newtons, kilonewtons	N,kN
Moment	newton-metres	Nm
Work	joules	J
Power	horsepower, watts, kilowatts	Hp, W, kW
Pressure	newton per square metre kilonewton per square metre	N/m² kN/m²
Angle	radian	rad
Angularspeed	radians per second radians-per-square second revolutions per minute revolutions per second	rad/s rad/s² Rpm rev/s

Decimal multiples and parts of unit

Decimal power	Value	Prefixes	Symbol	Stands for
10 ¹²	100000000000	tera	Т	billion times
10 ⁹	100000000	giga	G	thousand millintimes
10 ⁶	1000000	mega	М	million times
10 ³	1000	kilo	K	thousand times
10 ²	100	hecto	h	hundred times
10 ¹	10	deca	da	ten times
10 ⁻¹	0.1	deci	d	tenth
10-2	0.01	centi	С	hundredth
10 ⁻³	0.001	milli	m	thousandth
10 ⁻⁶	0.000001	micro	μ	millionth
10-9	0.00000001	nano	n	thousand millionth
10 ⁻¹²	0.00000000001	pico	р	billionth

SI units and the British units:

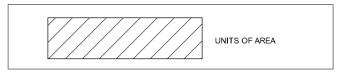
SI unit → British unit	British unit → SI unit
1 m = 3.281 ft	1 ft = 0.3048 m
	1 mile = 1.609 km
1 m/s = 3.281 ft/s	1 ft/s = 0.305 m/s
1 km/h = 0.621 mph	1 mph = 1.61 km/h
1 m/s ² = 3.281 ft/s ²	1 ft/s ² = 0.305 m/s ²
1 kg = 2.205 lb	1 lb = 0.454 kg
1 N = 0.225 lbf	1 lbf = 4.448 N
1 MN	1 million newtons
1 Nm = 0.738 lbf ft	1 lbf ft = 1.355 Nm
1 N/m ² = 0.000145 lbf/in ²	1 lbf/in ² = 6.896 kN/m ²
1 Pa = 1 N/m ²	
1 bar = 14.5038 lbf/in ²	1 lbf/in 2 = 6.895 kN/m 2
1.I = 0.738 ft lbf	1 ft lbf = 1.355 J
	1 calorie = 4.186 J
1 kJ = 0.948 BTU	1 BTU = 1.055 kJ
(1 therm = 100 000 BTU)	
1 kJ = 0.526 CHU	1 CHU = 1.9 kJ
1 kW = 1.34 hp	1 hp = 0.7457 kW
1km/L = 2.82 mile/gallon	1 mpg = 0.354 km/L
1 kg/kWh = 1.65 lb/bhp h	1 lb/bhp h = 0.606 kg/kW
	1 pt/bhp h = 0.631 litre/kV
	. 5.5.5.1
1 kJ/kg = 0.43 BTU/lb	1 BTU/lb = 2.326 kJ/kg
1 kJ/kg = 0.239 CHU/lb	1 CHU/lb = 4.188 kJ/kg
	1 km/h = 0.621 mph 1 m/s² = 3.281 ft/s² 1 kg = 2.205 lb 1 N = 0.225 lbf 1 MN 1 Nm = 0.738 lbf ft 1 N/m² = 0.000145 lbf/in² 1 Pa = 1 N/m² 1 bar = 14.5038 lbf/in² 1 J = 0.738 ft lbf 1 J = 0.239 calorie 1 kJ = 0.948 BTU (1 therm = 100 000 BTU) 1 kJ = 0.526 CHU 1 kW = 1.34 hp 1 km/L = 2.82 mile/gallon 1 kg/kWh = 1.65 lb/bhp h 1 litre/kWh=1.575 pt/bhp h


Prefixes for decimal multiples and submultiples

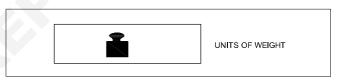
Use 1 Megapascal = 1 MPa = 1000000 Pa 1 Kilowatt = 1 kW = 1000 W 1 Hectolitre = 1 hL= 100 L Decanewton = 1 daN = 10 N Decimetre = 1 dm = 0.1 m 1 Centimetre = 1 cm = 0.01 m 1 Millimetre = 1 mm = 0.001 m 1 Micrometre = 1 um = 0.0000001 m

Conversion factors

1 inch	=	25.4 mm
1 mm	=	0.03937 inch
1 metre	=	39.37 inch
1 micron	=	0.00003937"
1 kilometre	=	0.621 miles
1 pound	=	453.6 g
1 kg	=	2.205 lbs
1 metric ton	=	0.98 ton


Units of physical quantities

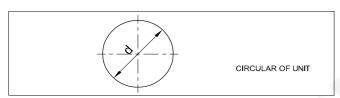
Units of length


Micron	1μ	=(0.001 mm
Millimetre	1 mm	=	1000 μ
Centimetre	1 cm	=	10 mm
Decimetre	1 dm	=	10 cm
Metre	1 m	=	10 dm
Kilometre	1 km	=	1000 m
Inch	1"	=	25.4 mm
Foot	1'	=	0.305 m
Yard	1 Yd	=	0.914 m
Nautical mile	1 NM	=	1852 m
Geographical mile	1	=	1855.4 m

Units of area

Square millimetre	1 mm ²	
Square centimetre	1 cm ²	= 100 mm ²
Square decimetre	$1 dm^2$	$= 100 \text{ cm}^2$
Square metre	1 m^2	$= 100 \text{ dm}^2$
Are	1 a	= 100 m ²
Hectare	1 ha	= 100 a
Square kilometre	1 km ²	= 100 ha
Square inch	1 sq.in	$= 6.45 \text{ cm}^2$
Square foot	1 sq.ft	$= 0.093 \text{ m}^2$
Square yard	1 sq.yd	$= 0.84 \text{ m}^2$
Square metre	1 m ²	= 10.76 ft ²
Acre	1	= 40.5 a
1 Acre = 100 cent	1 Hectar	re = 2.47 acres
1 Cent = 436 Sq. ft.	1 acre	= 0.4047 Hec
1 Ground = 2400 Sq.ft.		tare
	1 Hectar	re = 10000 sq. metre

Units of weight


Milligram - force	1 mgf	
Gram-force	1 gf	1000 mgf
Kilogram-force	1 kgf	= 1000 gf
Tonne	1 t	= 1000 kgf
Ounce	1	= 28.35 gf
Pound	1 lbs	= 0.454 kgf
Longton	1	= 1016 kgf
Short ton	1	= 907 kgf

Units of volume and capacity

nm³ cm³ lm³
m ³
lm³
7 cm ³
cm ³
itres
allon
allon
i

Circular unit

Radian

Relationship between Radian and Degree

1 Radian = $\frac{180^{\circ}}{\pi}$

180° = π Radian;

1 Degree = $\frac{\pi}{180}$ Radian

Work

Kilogram-force	1 kgfm	= 9.80665 J
Metre	1 kgfm	= 9.80665 Ws
Joule	1 J	= 1 Nm
Watt-second	1 Ws	= 0.102 kgfm
Kilowatt hour	1 kWh	$= 3.6 \times 10^6 \text{ J}$
		= 859.8456 kcal _{ıт}
I.T.Kilocalorie	1 kcal _{ır}	= 426.kgfm

Power

Kilogram-force metre/second

1 kgfm/s = 9.80665 W

Kilowatt 1 kW = 1000 W = 1000 J/s

= 102 kgfm/s (approx.)

Metric horse power 1 HP = 75 kgfm/s

= 0.736 kW

1 Calorie = 4.187J

I.T.Kilocalorie/hour = 1 kcal_{IT/h} = 1.163 W

Pressure

Pascal	1 Pa	= 1 N/m ²	1 atm	= 101325 Pa
Bar	$1 \text{ bar} = 10 \text{N/cm}^2$	= 100000 Pa-Torr	1 torr	$= \frac{101325}{760} \approx 133.32 \text{ pa}$
Atmosphere	1 atm	= 1 kgf/cm ²	1 kgf/cm ² =	= 735.6 mm of mercury

TEMPERATURE

Scale	Freezing point	Boiling point
Centigrade (°C)	0°C	100°C
Fahrenheit(°F)	32°F	212°F
Kelvin (K)	273K	373K
Reaumur(°R)	0°R	80°R

$$\frac{^{\circ}\text{R}}{80} = \frac{^{\circ}\text{C}}{100} = \frac{\text{K}-273}{100} = \frac{^{\circ}\text{F}-32}{180}$$

FORCE

Force In C.G.S. System: Force (Dyne) = Mass (gm)XAcceleration (cm/sec²)

In F.P.S. System: Force (Poundal) = Mass (Ib) X Acceleration (ft./sec²)

In M.K.S System: Force (Newton) = Mass (Kg) x Acceleration (mtr./sec²)

1 Dyne = 1 gm x1 cm/sec²

1 Poundal = 1 lb x 1 ft/sec²

1 Newton = 1 kg x 1 mtr/sec² = 10⁵ dynes

1 gm weight = 981 Dynes

1 lb weight = 32 Poundals

1 kg weight = 9.81 Newtons

ELECTRICAL QUANTITIES

V	Electric potential	V	Volt	V(W/A)
E	Electromotive force	V	Volt	V(W/A)
1	Electric current	Α	Ampere	Α
R	Electric resistance	Ω	Ohm	Ω (V/A)
е	Specific resistance	Ω m	Ohm metre	Vm/A
G	Conductance	$\Omega^{ ext{-1}}$	Siemens	S

ELECTRICAL QUANTITIES

Assignment - Answer the following question.

1	Co	onvert 320) kilometı	res into miles		b	M	ass			
2	Co	onvert 16 t	ons into	kilograms			i	650 g	=		kg
3	Co	onvert 40 i	nches in	to centimetres			ii	120 mg	=		a
4	Co	onvert 8 m	etres into	o feet		0		orce			_3
5	Co	onvert 2.5	gallons i	nto litres		C					
6	Co	onvert 5 lit	res into g	gallons			İ	1.2 N	=		_kg
7	12	20°C=		_ °F.			ii	25 kg	=		_N
8	Ex	cpand the	abbrevia	tions of the foll	owing	d	W	ork, energ	gy, amoı	unt of hea	at
	а	N/m²					i	120 KJ	=		_J
	b	RPM					ii	300 wh	=		_kwh
9	Сс	onvert the	following	g S.I. units as r	equired.	е	Р	ower			
	а	Length					i	0.2 kW	=		_W
	i	3.4 m	=	mm			ii	350 W	=		_kW
	ii	10.2 km	=	mile		f	C	onvert as r	equired.		
							i	5 N	=		KN

Unit, Fractions - Factors, HCF, LCM and problems

Prime Numbers and whole Numbers

Factor

A factor is a small number which divides exactly into a bigger number.e.g.

To find the factors of 24, 72, 100 numbers

$$24 = 2 \times 2 \times 2 \times 3$$

$$72 = 2 \times 2 \times 2 \times 3 \times 3$$

$$100 = 2 \times 2 \times 5 \times 5$$

The numbers 2,3,5 are called factors.

Definition of a prime factor

Prime factor is a number which divides a prime number into factors.e.g.

$$57 = 3 \times 19$$

The numbers 3 and 19 are prime factors.

They are called as such, since 3 & 19 also belong to prime number category.

Definition of H.C.F

The Highest Common Factor

The H.C.F of a given group of numbers is the highest number which will exactly divide all the numbers of that group.e.g.

To find the H.C.F of the numbers 24, 72, 100

$$24 = 2 \times 2 \times 2 \times 3$$

$$72 = 2 \times 2 \times 2 \times 3 \times 3$$

$$100 = 2 \times 2 \times 5 \times 5$$

The factors common to all the three numbers are

$$2 \times 2 = 4$$
. So HCF = 4.

Definition of L.C.M

Lowest common multiple

The lowest common multiple of a group of numbers is the smallest number that will contain each number of the given group without a remainder.e.g.

· Factorise the following numbers

7,17 - These two belong to Prime numbers. Hence no factor except unity and itself.

Factors of $20 = 2 \times 2 \times 5$

Factors of $66 = 2 \times 3 \times 11$

<u>4</u> 2

2

Factors of 128 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2

Select prime numbers from 3 to 29

 Find the HCF of the following group of numbers HCF of 78, 128, 196

$$78 = 2 \times 3 \times 13$$

 $128 = 2 \times 2$

$$196 = 2 \times 2 \times 49$$

$$HCF = 2$$

Find LCM of 84,92,76

$$LCM = 2 \times 2 \times 3 \times 7 \times 23 \times 19 = 36708$$

To find out the LCM of 36, 108, 60

LCM of the number

$$36, 108, 60 = 2 \times 2 \times 3 \times 3 \times 3 \times 5 = 540$$

The necessity of finding LCM and HCF arises in subtraction and addition of fractions.

Unit, Fractions - Fractions - Addition, subtraction, multiplication & division

Description

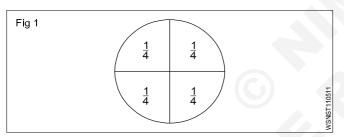
A minimal quantity that is not a whole number. For e.g. .

 $\frac{1}{5}$ a vulgur fraction consists of a numerator and denominator.

Numerator/Denominator

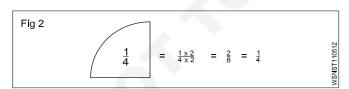
The number above the line in a vulgar fraction showing how many of the parts indicated by the denominator are taken is the numerator. The total number of parts into which the whole quantity is divided and written below the line in a vulgar fraction is the denominator. e.g.

$$\frac{1}{4}, \frac{3}{4}, \frac{7}{12}$$

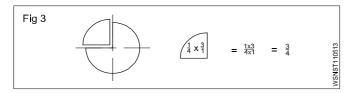

1,3,7 - numerators

4,12-denominators

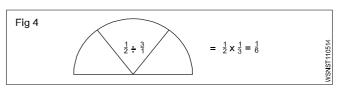
Fraction: Concept


Every number can be represented as a fraction.e.g.

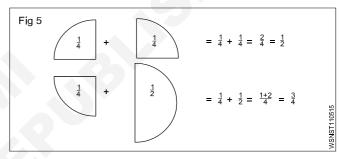
 $1\frac{1}{4} = \frac{5}{4}$, A full number can be represented as an apparent fraction.e.g. (Fig 1)


Fraction: Value

The value of a fraction remains the same if the numerator and denominator of the fraction are multiplied or divided by the same number. (Fig 2)


Multiplication

When fractions are to be multiplied, multiply all the numerators to get the numerator of the product and multiply all the denominators to form the denominator of the product. (Fig 3)


Division

When a fraction is divided by another fraction the dividend is multiplied by the reciprocal of the divisor. (Fig 4)

Addition and Subtraction

The denominators of the fractions should be the same when adding or subtracting the fractions. Unequal denominators must first be formed into a common denominator. It is the lowest common denominator and it is equal to the product of the most common prime numbers of the denominators of the fractions in question. (Fig 5)

Examples

• Multiply $\frac{3}{4}$ by $\frac{2}{3}$,

$$\frac{3}{4} \times \frac{2}{3} = \frac{6}{12} = \frac{1}{2}$$

• Divide $\frac{3}{8}$ by $\frac{3}{4}$,

$$\frac{3}{8} \div \frac{3}{4} = \frac{3}{8} \times \frac{4}{3} = \frac{1}{2}$$

• Add $\frac{3}{4}$ and $\frac{2}{3}$,

$$\frac{3}{4} + \frac{2}{3} = \frac{9}{12} + \frac{8}{12} = \frac{17}{12} = 1\frac{5}{12}$$

• $sub \frac{7}{16} from \frac{17}{32}$

$$\frac{17}{32} - \frac{7}{16} = \frac{17}{32} - \frac{14}{32} = \frac{(17 - 14)}{32} = \frac{3}{32}$$

Types of fractions

- Proper fractions are less than unity. Improper fractions have their numerators greater than the denominators.
- · A mixed number has a full number and a fraction.

Addition of fraction

Add
$$\frac{1}{2} + \frac{1}{8} + \frac{5}{12}$$

To add these fractions we have to find out L.C.M of denominators 2,8,12.

Find L.C.M of 2,8,12

Step 1 L.C.M

Factors are 2,2,2,3

Hence L.C.M = $2 \times 2 \times 2 \times 3 = 24$

Step 2

$$\frac{1}{2} + \frac{1}{8} + \frac{5}{12} = \frac{12}{24} + \frac{3}{24} + \frac{10}{24}$$
$$= \frac{12 + 3 + 10}{24} = \frac{25}{24} = 1\frac{1}{24}.$$

Subtraction of fraction

subtract
$$9\frac{15}{32}$$
 from $17\frac{9}{16}$ or $(17\frac{9}{16} - 9\frac{15}{32})$

Step 1: Subtract whole number first 17 - 9 = 8

Step 2: L.C.M of 16,32 = 32

Since number 16 divides the number 32

Subtracting fractions = $\frac{3}{32}$

Adding with whole number from Step 1

we get
$$8 + \frac{3}{32} = 8 \frac{3}{32}$$

Common fractions

Problems with plus and minus sign

Example

solve
$$3\frac{3}{4} + 6\frac{7}{8} - 4\frac{5}{16} - \frac{9}{32}$$

Rule to be followed

- 1 Add all whole numbers
- 2 add all + Numbers
- 3 Add all Numbers
- 4 Find L.C.M of all denominators

Solution

Step 1: Add whole numbers = 3 + 6 - 4 = 5

Step 2: Add fractions =
$$\frac{3}{4} + \frac{7}{8} - \frac{5}{16} - \frac{9}{32}$$

L.C.M of 4,8,16,32 is 32

$$\frac{24 + 28 - 10 - 9}{32}$$

$$= \frac{52 - 19}{32}$$

$$= \frac{33}{32} = 1\frac{1}{32}$$

Step 3: Adding again with the whole number

we get
$$5 + 1\frac{3}{32} = 6\frac{3}{32}$$

Examples

Common fractions

Multiply

a
$$\frac{3}{8}$$
 by $\frac{4}{7} = \frac{3}{8} \times \frac{4}{7} = \frac{3}{14}$ b $\frac{2}{3} \times \frac{3}{4} \times \frac{5}{8} = \frac{5}{16}$

Division

$$a \qquad \frac{5}{16} \div \frac{5}{32} = \frac{5}{16} \times \frac{32}{5} = 2$$

b
$$4\frac{2}{3} \div 3\frac{1}{7} = \frac{14}{3} \div \frac{22}{7} = \frac{14}{3} \times \frac{7}{22} = \frac{49}{33} = 1\frac{16}{33}$$

Addition

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$$

$$L..C.M = 2,4,8 = 8$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{4+2+1}{8} = \frac{7}{8}$$

Subtraction

$$5\frac{1}{4} - 3\frac{3}{4} = 5 - 3 + \frac{1}{4} - \frac{3}{4}$$
$$= 2 + \frac{1}{4} - \frac{3}{4} = 2\frac{1}{4} - \frac{3}{4}$$
$$= \frac{9}{4} - \frac{3}{4} = \frac{9 - 3}{4}$$
$$= \frac{6}{4} = \frac{3}{2} = 1\frac{1}{2}$$

Assignment

1 Convert the following into improper fractions.

a
$$1\frac{2}{7} =$$

b
$$4\frac{3}{5} =$$

c
$$3\frac{3}{5} =$$

2 Convert the following into mixed numbers.

a
$$\frac{12}{11} =$$

b
$$\frac{36}{14} =$$

$$c \frac{18}{10} =$$

3 Place the missing numbers.

a
$$\frac{11}{13} = \frac{x}{91}$$

b
$$\frac{3}{5} = \frac{42}{x}$$

$$c = \frac{9}{14} = \frac{x}{98}$$

4 Simplify.

a
$$\frac{45}{60} =$$

b
$$\frac{8}{12} =$$

5 Multiply.

a
$$5x\frac{2}{3} =$$

b
$$\frac{3}{4}$$
 x 2 = _____

$$c \frac{3}{4} \times \frac{5}{6} =$$

6 Divide

a
$$\frac{1}{4} \div \frac{3}{4} =$$

b
$$6 \div \frac{3}{4} =$$

$$c \quad \frac{3}{4} \div \frac{2}{7} = \underline{\hspace{1cm}}$$

7 Place the missing numbers.

a
$$\frac{2}{3} = \frac{1}{12}x$$

b
$$\frac{14}{24} = \frac{1}{12}x$$

c
$$\frac{7}{8} = \frac{1}{12}x$$

8 Add the followings:

a
$$\frac{3}{4} + \frac{7}{12} =$$

b
$$\frac{7}{8} + \frac{3}{4} =$$

9 Subtract

a
$$\frac{4}{5} - \frac{2}{5} =$$

b
$$\frac{5}{6} - \frac{3}{4} =$$

10 Simplify

a
$$2\frac{6}{7} - \frac{3}{8} - \frac{1}{3} - 1\frac{1}{16} =$$

b
$$2\frac{2}{7} - \frac{5}{6} + 8 =$$

11 Express as improper fractions

a
$$5\frac{3}{4}$$

b
$$3\frac{5}{64}$$

c
$$1\frac{5}{12}$$

Unit, Fractions - Decimal fractions - Addition, subtraction, multiplication & division

Description

Decimal fraction is a fraction whose denominator is 10 or powers of 10 or multiples of 10 (i.e.) 10, 100, 1000, 10000 etc. Meaning of a decimal number:-

12.3256 means

$$(1 \times 10) + (2 \times 1) + \frac{3}{10} + \frac{2}{100} + \frac{5}{1000} + \frac{6}{10000}$$

Representation

The denominator is omitted. A decimal point is placed at different positions of the number corresponding to the magnitude of the denominator

$$Ex. \frac{5}{10} = 0.5, \frac{35}{100} = 0.35 \frac{127}{10000} = 0.0127, \frac{3648}{1000} = 3.648$$

Addition and subtraction

Arrange the decimal fractions in a vertical order, placing the decimal point of each fraction to be added or subtracted, in succession one below the other, so that all the decimal points are arranged in a straight line. Add or subtract as you would do for a whole number and place the decimal point in the answer below the column of decimal points.

Decimal fractions less than 1 are written with a zero before the decimal point. Example: 45/100 = 0.45 (and not simply .45)

Add 0.375 + 3.686

0.375

3.686

4.061

Subtract 18.72 from 22.61

22.61

18.72

3.89

Multiplication

Ignore the decimal points and multiply as whole numbers. Find the total number of digits to the right of the decimal point. Insert the decimal point in the answer such that the number of digits to the right of the decimal point equals to the sum of the digits found to the right of the decimal points in the problem.

Multiply 2.5 by 1.25

= $25 \times 125 = 3125$. The sum of the figures to the right of decimal point is 3. Hence the answer is 3.125.

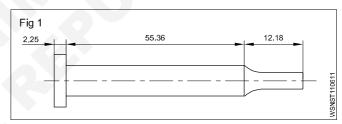
Division

Move the decimal point of the divisor to the right to make it a full number. Move the decimal point in the dividend to

the same number of places, adding zeroes if necessary. Then divide.

Divide 0.75 by 0.25

0.25)0.75


 $\frac{0.75}{0.25} \times \frac{100}{100} = \frac{75}{25}$

25)75 = 3

Move the decimal point in the multiplicand to the right to one place if the multiplier is 10, and to two places if the multiplier is 100 and so on. When dividing by 10 move the decimal point one place to the left, and, if it is by 100, move them point by two places and so on.

Example

Allowance allowing 3 mm for cutting off each pin, how many pins can be made from a 900 mm long bar and how much material will be left out?

Total Length of pin = 2.25 + 55.36 + 12.18

= 69.79 mm

Cutting allowance = 3 mm

Total Length = length of pin + cutting allowance

= 69.79 mm + 3 mm

= 72.79 mm

Length of the bar = 900 mm

No.of pins to be cut = $\frac{900}{72.79}$ = 12.394

= 12 pins

Left out material = Total length - length of pin +

cutting allowance

 $= 900 - 12 \times 69.79 + 12 \times 3$

= 900 - 837.48 + 36

= 900 - 873.48

Left out length = 26.52 mm

Conversion of Decimals into fractions and vice-versa

· Convert decimal into fractions

Example

Convert 0.375 to a fraction

Now place 1 under the decimal point followed by as many zeros as there are numbers

$$0.375 = \frac{375}{1000} = \frac{15}{40} = \frac{3}{8}$$
$$0.375 = \frac{3}{8}$$

· Convert fraction into decimal

Example

• Convert $\frac{9}{16}$ to a decimal

Proceed to divide $\frac{9}{16}$ in the normal way of division but put zeros (as required) after the number 9 (Numerator)

$$\frac{9}{16} = 0.5625$$

Recurring decimals

While converting from fraction to decimals, some fractions can be divided exactly into a decimal. In some fractions the quotient will not stop. It will continue and keep recurring. These are called recurring decimals.

Examples

• convert
$$\frac{1}{3}$$
, $\frac{2}{3}$, $\frac{1}{7}$

a
$$\frac{1}{3} = \frac{10000}{3} = 0.3333 - \text{Recurring}$$

b
$$\frac{2}{3} = \frac{20000}{3} = 0.666 - \text{Recurring}$$

c
$$\left(\frac{1}{7} = \frac{10000}{7} = 0.142857142 - \text{Recurring}\right)$$

Method of writing approximations in decimals

1.73556	= 1.7356	Correct to 4 decimal places
5.7343	= 5.734	Correct to 3 decimal places
0.9345	= 0.94	Correct to 2 decimal places

Multiplication and division by 10,100,1000

Multiplying decimals by 10

A decimal fraction can be multiplied by 10,100,1000 and so on by moving the decimal point to the right by as many places as there are zeros in the multiplier.

4.645 x 10 = 46.45 (one place)
 4.645 x 100 = 464.5 (two places)
 4.645 x 1000 = 4645 (three places)

Dividing decimals by 10

A decimal fraction can be divided by 10,100,1000 and so on, by moving the decimal point to the left by as many places as required in the divisor by putting zeros

Examples

3.732 ÷ 10 = 0.3732 (one place)
 3.732 ÷ 100 = 0.03732 (two places)
 3.732 ÷ 1000 = 0.003732 (three places)

Examples

 Rewrite the following number as a fraction 453.273

$$= (4 \times 100) + (5 \times 10) + (3 \times 1) + \frac{2}{10} + \frac{7}{100} + \frac{3}{100}$$
$$= 453 \frac{273}{1000}$$

- Write the representation of decimal places in the given number 0.386
 - 3 Ist decimal place 0.3
 - 8 IInd decimal place 0.08
 - 6 IIIrd decimal place 0.006
- Write approximations in the following decimals to 3 places.
 - a 6.9453 ----> 6.945
 - b 8.7456 ----> 8.746
- · Convert fraction to decimal

$$\frac{21}{24} = \frac{7}{8} = 0.875$$

· Convert decimal to fraction

$$0.0625 = \frac{625}{10000} = \frac{5}{80} = \frac{1}{16}$$

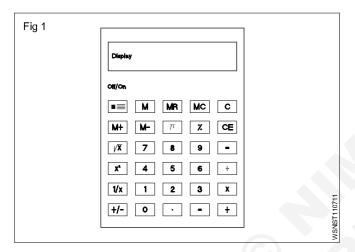
Assignment

- 1 Write down the following decimal numbers in the expanded form.
 - a 514.726
 - b 902.524
- 2 Write the following decimal numbers from the expansion.

a
$$500 + 70 + 5 + \frac{3}{10} + \frac{2}{100} + \frac{9}{1000}$$

b
$$200 + 9 + \frac{1}{10} + \frac{3}{100} + \frac{5}{1000}$$

- 3 Convert the following decimals into fractions in the simplest form.
 - a 0.72
 - b 5.45
 - c 3.64
 - d 2.05
- 4 Convert the following fraction into decimals
 - $a = \frac{3}{5}$
 - b $\frac{10}{4}$
 - c $24 \frac{54}{1000}$
 - $d \frac{12}{25}$
 - $e \frac{8}{25}$
 - $f = 1 \frac{3}{25}$
- 5 Addition of decimals
 - a 4.56 + 32.075 + 256.6245 + 15.0358
 - b 462.492 + 725.526 + 309.345 + 626.602
- 6 Subtract the following decimals
 - a 612.5200 -9.6479
 - b 573.9246 -215.6000
- 7 Add and subtract the following
 - a 56.725 + 48.258 32.564
 - b 16.45 + 124.56 + 62.7 3.243


- 8 Multiply the following
 - a By 10,100,1000
 - i 3.754 x 10
 - ii 8.964 x 100
 - iii 2.3786 x 1000
 - iv 0.005 x 1000
 - b By whole numbers
 - i 8.4 x 7
 - ii 56.72 x 8
 - c By another decimal figure (use calculator)
 - i 15.64 x 7.68
 - ii 2.642 x 1.562
- 9 Divide the following
 - a $\frac{62.5}{25}$
 - b $\frac{64.56}{10}$
 - $c = \frac{0.42}{100}$
 - $d = \frac{48.356}{1000}$
- 10 Division
 - a $\frac{16.8}{1.2}$
 - b $\frac{1.54}{1.1}$
- 11 Change the fraction into a decimal
 - $1\frac{5}{8}$
 - ii $\frac{12}{25}$
- 12 Find the value
 - 20.5 x 40 ÷ 10.25 + 18.50

Unit, Fractions - Solving problems by using calculator

A pocket calculator allows to spend less time in doing tedious calculations. A simple pocket calculator enables to do the arithmetical calculations of addition, subtraction, multiplication and division, while a scientific type of calculator can be used for scientific and technical calculations also.

No special training is required to use a calculator. But it is suggested that a careful study of the operation manual of the type of the calculator is essential to become familiar with its capabilities. A calculator does not think and do. It is left to the operator to understand the problem, interpret the information and key it into the calculator correctly.

Constructional Details (Fig 1)

The key board is divided into five clear and easily recognizable areas and the display.

· Data entry keys

The entry keys are from $\begin{bmatrix} 0 \end{bmatrix}$ to $\begin{bmatrix} 9 \end{bmatrix}$

and a key for the decimal point .

· Clearing keys

These keys have the letter 'C'

C CLR Clear totally

CE Clear entry only

CM , MC Clear memory

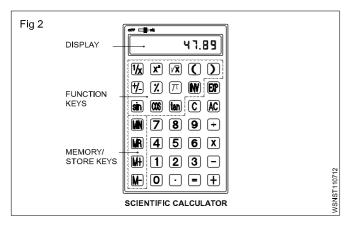
+ Addition key

- Subtraction key

x Multiplication key

÷ Division key

= Equals key to display the result


Function keys

- π Pi key
- \sqrt{x} Square root key
- % Percentage key
- +/- Sign change key
- x² Square key
- $\frac{1}{X}$ Reciprocal key

Memory keys

- M Store the display number
- M+ The displayed value is added to the memory
- M- The displayed value is subtracted from the memory
- MR RCL The stored value is recalled on to the display

Further functional keys included in Scientific calculators are as shown in Fig 2.

Sin Cos Tan () For trigonometric functions and for brackets

Exp Exponent key

Some of the keys have coloured lettering above or below them. To use a function in coloured lettering, press INV key. INV will appear on the display. Then press the key that the coloured lettering identifies. INV will disappear from the display.

log , INV 10^x to obtain the logarithm of the displayed

number and the antilogarithm of the displayed value.

INV R-P to convert displayed rectangular coordinates

into polar coordinates.

INV P-R to convert displayed polar coordinates into rectangular coordinates.

The display

The display shows the input data, interim results and answers to the calculations.

The arrangement of the areas can differ from one make to another. Keying in of the numbers is done via. an internationally agreed upon set of ten keys in the order that the numbers are written.

Rules and Examples:

• Addition: Example 18.2 + 5.7

Sequence	Input	Display	
Input of the 1st term of the sum	18.2	18.2	
Press + key	+	18.2	
Input 2nd term of the sum. the first term goes into the register	5.7	5.7	
Press the = key	=	23.9	

• Subtraction: Example 128.8 - 92.9

Sequence	Input	Display
Enter the subtrahend	128.8	128.8
Press - key	-	128.8
Enter the minuend. The subtrahend goes into the register	92.9	92.9
Press the = key	≡	35.9

• Multiplication: Example 0.47 x 2.47

Sequence	Input	Display
Enter multiplicand	. 4 7	0.47
Press x key	X	0.47
Enter multiplier, multiplicand goes to register	2.47	2.47
Press = key	=	1.1609

• Division: Example 18.5/2.5

Sequence	Input	Display
Enter the dividend	18.5	18.5
Press ÷ Key	÷	18.5
Enter the divisor goes to the register Press = key	2.5	2.5 7.4

Multiplication & Division: Example: 2.5 x 7.2 / 4.8 x 1.25

Example : 2.0 x 7.2 / 4.0 x 1.20				
Sequence	Input	Display		
Enter 2.5	2. 5	2.5		
Press x key	x	2.5		
Enter 7.2	7. 2	7.2		
Press ÷ key	÷	18		
Enter Open bracket	(
Enter 4.8	4 . 8	4.8		
Press x key	x	4.8		
Enter 1.25	1 . 2 5	1.25		
Enter Close bracket)	6		
Press = key	=	3.0		

• Store in memory Example (2+6) (4+3)

Sequence	Input	Display
Workout for the first bracket	2	2
DIACKEL	+	2
	6	6
	=	8
Store the first result in	STO, M	8
x	or M+	
Workout for the 2nd bracket	4	4
∠nd bracket	+	4
	3	3
	=	7
Press x key	x	7
Recall memory	RCL or MR	8
Press = key	=	56

Percentage: Example 12% of 1500

Sequence	Input	Display
Enter 1500	1500	1500
Press x key	x	1500
Enter 12	1 2	12
Press INV %	INV %	12
Press = key	=	180

• Square root: Example $\sqrt{2} + \sqrt{3 \times 5}$

Sequence	Input	Display
Enter 2	2	2
Press √a key	√a	1.414
Press + key	+	1.414
Press bracket key	(1.414
Enter 3	3	3
Press √a key	\sqrt{a}	1.732
Press x key	x	1.732
Enter 5	5	5
Press √a key	\sqrt{a}	2.236
Press bracket close key		3.873
Press = key	=	5.2871969
$2\sqrt{+(3)\sqrt{x}}$	5 \(\) =	5.2871969

$$\sqrt{2} + \sqrt{3 \times 5} = 5.287$$

• Common logarithm: Example log 1.23

Sequence		Input	Display
1 . 2 3	log	=	0.0899051

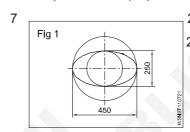
• **Power:** Example 123 + 30²

Sequence	Input	Display
1 2 3 + 3 0 INV X ²	=	1023

- Before starting the calculations be sure to press the 'ON' key and confirm that '0' is shown on the display.
- Do not touch the inside portion of the calculator. Avoid hard knocks and unduly hard pressing of the keys.
- Maintain and use the calculator in between the two extreme temperatures of 0° and 40°
 C
- Never use volatile fluids such as lacquer, thinner, benzene while cleaning the unit.
- Take special care not to damage the unit by bending or dropping.
- Do not carry the calculator in your hip pocket.

Assignment

1 Using calculator solve the following

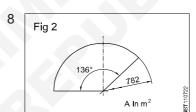

- d 47160 + 1368.4 + 0.1 + 1.6901 + 134.267 =
- 2 Using calculator simplify the following
 - a 24367 4385 = _____
 - b 9.643 0.7983 =
 - c 4382.01 381.3401 =
 - d 693.42 0.0254 = _____
- 3 Using calculator find the values of the following
 - a 23 x 87 = _____
 - b 1376 x 0.81 = ____
 - c $678 \times 243 =$ _____
 - $d 0.75 \times 0.24 =$
- 4 Using calculator solve the following
 - a 22434 ÷ 3 =
 - b 4131 ÷ 243 = ____
 - c 469890 ÷ 230 = ____
 - d 3.026 ÷ 0.89 =
- 5 Solve the following

a
$$\frac{1170 \times 537.5}{13 \times 215}$$
 =

- b $\frac{28.2 \times 18 \times 3500}{1000 \times 3 \times 0.8} =$
- 6 Solve the following

a
$$\frac{(634+128) \times (384-0.52)}{8 \times 0.3} =$$

b $\frac{(389-12.2) \times (842-0.05-2.6)}{(3.89-0.021) \times (28.1+17.04)} =$

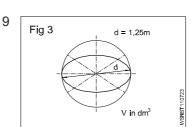

2a = 450 mm(major axis) 2b = 250mm(minor axis)

Perimeter of the ellipse

A = ____metre²

Hint $A = \pi x a x b$

unit²

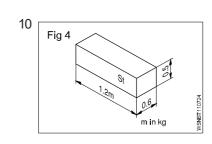

ø = 782 mm

 α = 136°

Area of the sector

A = ____

$$Hint A = \frac{\pi x d^2}{4} x \frac{\alpha}{360^{\circ}}$$



d = 1.25 metre

 $V = _{---} dm^3$

Volume of sphere

Hint V = $\frac{4}{3} \pi r^3$

L = 1.2 metres

B = 0.6 metre

H = 0.5 metre

 $'\rho'(rho)$ density of steel

 $= 7.85 \text{ kg/dm}^{3'}$

m = ____ kg

(mass 'm = $V \times \rho$)

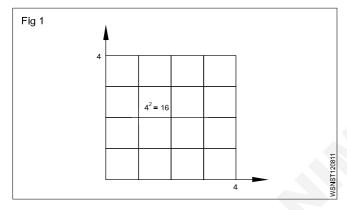
Square root, Ratio and Proportions, Percentage - Square and square root

a basic number

2 exponent

 $\sqrt{}$ radial sign indicating the square root.

 $\sqrt{a^2}$ square root of 'a' square


a2 radicand

Square number

The square of a number is the number multiplied by itself.

Basic number x basic number = Square number

$$a \times a = a^2$$

 $4 \times 4 = 4^2 = 16$

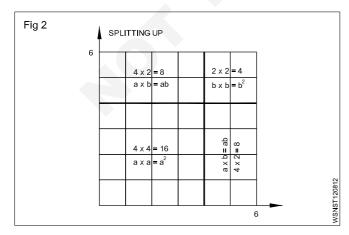
Splitting up (Fig 2)

A square area can be split up into sub-areas. The largest square of 36 is made up of a large square 16, a small square 4 and two rectangles 8 each.

Large square $4 \times 4 = 16$

a-

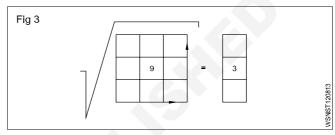
Two rectangles $2 \times 4 \times 2 = 16$


2ab

Small square $2 \times 2 = 4$

 b^2

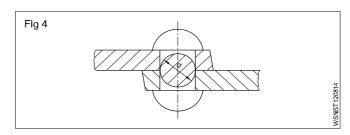
Sum of sub-areas = $36 = a^2 + 2ab + b^2$


$$\sqrt{36} = \sqrt{a^2 + 2ab + b^2}$$

Result: In order to find the square root, we split up the square numbers.

Extracting the square root procedure

- Starting from the decimal point form groups of two figures towards right and left. Indicate by a prime symbol. $\sqrt{4624.00}$
- Find the root of the first group, calculate the difference, bring down the next group.
- Multiply the root by 2 and divide the partial radicand.
- Enter the number thus calculated in the divisor for the multiplication.


If there is a remainder, repeat the procedure.

Basic number x basic number = Square

 $\sqrt{\text{Square number}} = \text{basic number}$

Example

The cross-section of a rivet is 3.46 cm². Calculate the diameter of the hole.

Rivet cross-section is the hole cross-section.

To find 'd'.

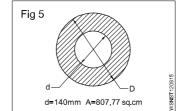
Given that Area = 3.46 cm^2 Area = 0.785 x d^2 (formula) $3.46 \text{ cm}^2 = \text{d}^2 \text{ x } 0.785$

 $d = \sqrt{\frac{3.46}{0.795}}$

 $d^2 = \frac{3.46 \text{ cm}^2}{}$

d = 2.1cm (or) 21mm

Square root, Ratio and Proportions, Percentage - Simple problems using calculator


1 a $\sqrt{2916} =$ ______.

b
$$\sqrt{45796} =$$
______.

$$c \sqrt{8.2944} =$$
______.

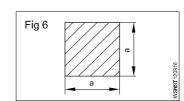
d
$$\sqrt{63.845} =$$
 ______.

6

 $A = 807.77 \text{ cm}^2$

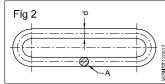
d = 140 mm

D=____mm


2

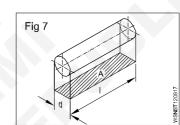
 $A = 2025 \text{ mm}^2$

a = _____mm


7

 $a \times a = 543169 \text{ mm}^2$

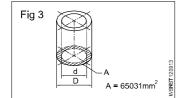
a = _____mm


3

 $A = 176.715 \text{ mm}^2$

d = _____mm

8

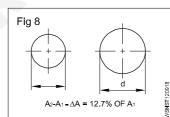


d: I = 1:1.5

 $A = 73.5 \text{ mm}^2$

d = _____mm

4

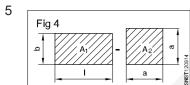


 $A = 65031 \text{ mm}^2$

d = 140 mm

D=____mn

9


increase in area

A = 12.7%

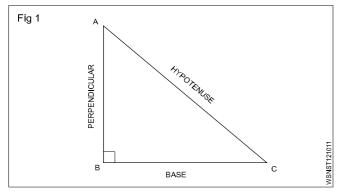
 $A = 360 \text{ mm}^2$

d = _____mr

(d = diameter after the increase in area)

I = 58 cm

b = 45 cm


 $A_1 = A_2$

a = cr

Square root, Ratio and Proportions, Percentage - Applications of pythagoras theorem and related problems

Applications of Pythagoras Theorem

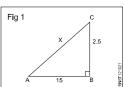
Some of the applications of the Pythagoras theorem are; (Fig 1)

- 1 The Pythagoras theorem is commonly used to find the lengths of sides of a right-angled triangle.
- 2 It is used to find the length of the diagonal of a square.
- 3 Pythagoras theorem is used in trigonometry to find the trigonometric ratios like sin, cos, tan, cosec, sec and cot.
- 4 Pythagoras theorem is used in security cameras for face recognition.
- 5 Architects use the technique of the Pythagoras theorem for engineering and construction fields.
- 6 The Pythagoras theorem is applied in surveying the mountains.
- 7 It is also used in navigation to find the shortest route.
- 8 By using the Pythagoras theorem, we can derive the formula for base, perpendicular and hypotenuse.
- 9 Painters use ladders to paint on high buildings with the help of the Pythagoras theorem.
- 10 Pythagoras theorem is used to calculate the steepness of slopes of hills or mountains.
- 11 The converse of the Pythagoras theorem is used to check whether a triangle is a right triangle or not.

Application of pythagoras theorem in real life

Pythagoras theorem states that

"In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides".


- 1 The sides of this triangle have been named Perpendicular, Base and Hypotenuse.
- 2 The hypotenuse is the longest side, as it is opposite to the angle 90°.

- 3 The sides of a right triangle (say AB, BC and CA) which have positive integer values, when squared, are put into an equation, also called a Pythagorean triplet.
- 4 To calculate the length of staircase required to reach a first floor
- 5 To find the length of the longest item can be kept in your room.
- 6 To find the steepness of the hills or mountains.
- 7 To find the original height of a tree broken due to heavy rain and lying on itself
- 8 To determine heights and measurements in the construction sites.

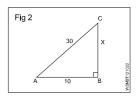
Examples

1 What is the side AC if AB = 15 cm, BC = 25 cm.

$$AC^2 = AB^2 + BC^2$$

= $15^2 + 25^2$
= $225 + 625 = 850$

AC =
$$\sqrt{850}$$
 = 29.155 cm

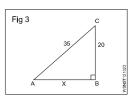

2 What is the side BC if AB = 10 cm, AC = 30 cm.

$$AC^2 = AB^2 + BC^2$$

$$30^2 = 10^2 + BC^2$$

$$900 = 100 + BC^2$$

$$BC^2 = 900 - 100 = 800$$


3 What is the side AB if BC = 20 cm, AC = 35 cm.

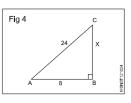
$$AC^2 = AB^2 + BC^2$$

$$35^2 = AB^2 + 20^2$$

$$AB^2 = 1225 - 400 = 825$$

$$AB = 28.72 \text{ cm}$$

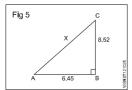
4 What is the value of side BC if AB = 8 cm, AC = 24 cm.


$$AC^2 = AB^2 + BC^2$$

$$24^2 = 8^2 + BC^2$$

$$576 = 64 + BC^2$$

$$BC^2 = 576 - 64 = 512$$

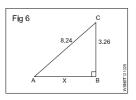

BC =
$$\sqrt{572}$$
 = 22.63 cm

5 What is the value side AC if AB = 6.45 cm, BC = 8.52

$$AC^2 = AB^2 + BC^2$$

 $AC^2 = 6.45^2 + 8.52^2$
 $AC^2 = 41.60 + 72.59$

= 114.19



AC =
$$\sqrt{114.19}$$
 = 10.69 cm

6 What is the value of side AB if BC = 3.26 cm, AC = 8.24 cm.

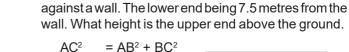
$$AC^2 = AB^2 + BC^2$$

8.24²= $AB^2 + 3.26^2$

$$AB^2 = 67.9 - 10.63$$
$$= 57.27$$

AB =
$$\sqrt{57.27}$$
 = 7.57 cm

7 What is the value of side AB if AC = 12.5 cm, BC = 8.5 cm.


Fig 7

$$AC^2 = AB^2 + BC^2$$

$$12.5^2 = AB^2 + 8.5^2$$

= 84

AB =
$$\sqrt{84}$$
 = 9.17 cm

$$C^2 = AB^2 + BC^2$$

8 A ladder of 12.5 metre long is placed with upper end

 $= (12.5 + 7.5) (12.5 - 7.5)^2$

Fig 8

$$BC^2 = AC^2 - AB^2$$

$$BC^2 = x^2$$

$$AC^2 = AB^2 + BC^2$$

$$12.5^2 = x^2 + 7.5^2$$

$$x^2 = (12.5)^2 - (7.5)^2$$

$$= 20 \times 5$$

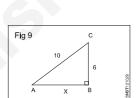
$$=\sqrt{100} = 10$$

$$x = 10 \text{ m}$$

9 What is the value of AB.

$$AC^2 = AB^2 + BC^2$$

$$AB^2 = AC^2 - BC^2$$


$$AB^2 = x^2$$

$$AC^2 = AB^2 + BC^2$$

$$10^2 = x^2 + 6^2$$

$$x^2 = 10^2 - 6^2$$

$$x = \sqrt{64}$$

Assignment

- 1 What is the value of side AB, in a right angled triangle of side AC = 10 cm and BC = 5 cm.
- 2 What is the value of side AC, in a right angled triangle of side AB = 6.5 cm and BC = 4.5 cm.
- 3 What is the value of side BC, in a right angled triangle of side AC = 14.5 cm and AB = 10.5 cm.
- 4 What is the value of side AC, in a right angled triangle of side AB = 7 cm and BC = 5 cm.
- 5 What is the value of side BC, in a right angled triangle of side AC = 13.25 cm and AB = 8.75 cm.

Square root, Ratio and Proportions, Percentage - Ratio and proportion

Ratio

Introduction

It is the relation between two quantities of the same kind and is expressed as a fraction.

Expression

a, b two quantities of the same kind. $\frac{a}{b}$ or a:b or a \div b or a in b is the ratio.

Ratio is always reduced to the lowest terms.

Example

$$7:14 = \frac{7}{14} = \frac{1}{2} = 1:2$$

Proportion

It is the equality between the ratios, a: b is a ratio and c: d is another ratio. Both ratios are equal. Then

a :b :: c : d or
$$\frac{a}{b} = \frac{c}{d}$$

Example

Proportion fundamentals

If
$$\frac{a}{b} = \frac{c}{d}$$
 then

$$\frac{a}{c} = \frac{b}{d}$$

$$\frac{b}{a} = \frac{d}{c}$$

•
$$\frac{a+b}{b} = \frac{c+d}{c}$$
 and $\frac{a+b}{a} = \frac{c+d}{c}$

•
$$\frac{a-b}{b} = \frac{c-d}{d}$$

•
$$\frac{a+b}{b+d} = \frac{a}{c} = \frac{c}{d}$$

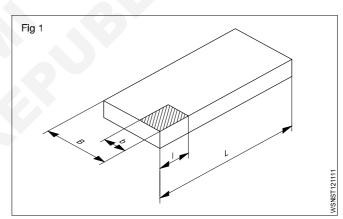
3:4::6:8 or
$$\frac{3}{4} = \frac{6}{8}$$

•
$$3 \times 8 = 6 \times 4$$

$$\frac{3}{6} = \frac{4}{8}$$

$$\frac{4}{3} = \frac{8}{6}$$

$$\frac{3+4}{4} = \frac{6+8}{8}$$

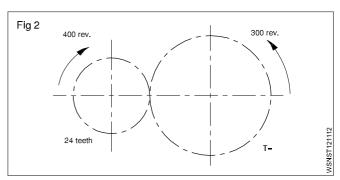

$$\frac{3-4}{4} = \frac{6-8}{8}$$

$$\frac{3+6}{4+8} = \frac{9}{12} = \frac{3}{4}$$

Ratio - relation of two quantities of the same kind. Proportion - equality between two ratios.

Example

 A steel plate of 800 x 1400 mm is to be drawn to a scale of 1:20. What will be the lengths in the Fig 1.



The reduction ratio is $\frac{1}{20}$.

B is reduced from 800 = 800 x $\frac{1}{20}$ = 40 mm.

L is reduced from 1400 x $\frac{1}{20}$ = 70 mm.

 Find the number of teeth of the larger gear in the gear transmission shown in the Fig 2.

Speed ratio = 400 : 300

Teeth ratio = 24:T

$$\frac{400}{300} = \frac{T}{24}$$

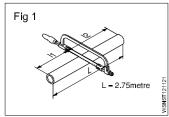
$$T = \frac{24 \times 400}{300} = 32 \text{ Teeth}$$

Find the ratio of A:B:C

If A:B= 2:3 and B:C=4:5

A:B = 2:3

B:C = 4:5

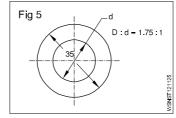

A:B = 8:12 (Ratio 2:3 multiply by 4)

B:C = 12:15 (Ratio 4:5 multiply by 3)

∴ A:B:C = 8:12:15

Assignment

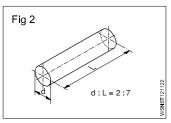
1


 $I_1: I_2 = 2:3$

L = 2.75 metres

I₁=_____metres

I₂=_____metres

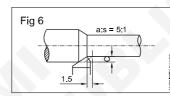


D:d = 1.75:1

D = 35 mm

d = ____ mm

2

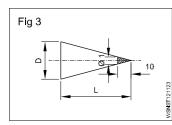


d: L of shaft = 2:7

d = 40 mm

L = ____ mm

6



a:s = 5:1

s = 1.5mm

a =_____mm

3

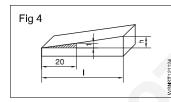
D:L=1:10

L=150mm

D=____mm

7 A:B=9:12

B:C=8:10


Then A:B:C=____

8 A:B=5:6

B:C=3:4

Then A:B:C=

4

 $\frac{\Delta h}{l} = \frac{1}{20}$

I = 140 mm

∆h = ____ mm

9 A:55=9:11

A = _____

10 15:9.3=40:x

x = ____

Square root, Ratio and Proportions, Percentage - Ratio and Proportion - Direct and indirect proportions

Proportion

Description

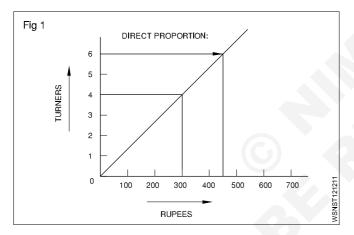
It is the equality between the ratios, a:b is a ratio and c:d is another ratio. Both ratios are equal. Then

a:b::c:d or

e.g. 250: 2000::1:8

Rule of three

A three step calculation


statement

single

multiple.

Direct proportion

The more in one the more in the other - An increase in one denomination produces an increase in the other. (Fig 1)

Examples

1 4 turners earn 300 Rupees. How much will 6 Turners earn?

Statement

4 turners = 300 Rupees

Single

1 Turner = 75 Rupees

Multiple

6 Turners = 6 x 75 = 450 Rupees

2 One vehicle consumes 30 litres of petrol per day how much petrol is used by 6 Vehicles operating under similar condition.

One vehicle uses petrol = 30 litres per day.

Then six vehicles will use = 6 Times as much

 $= 6 \times 30 = 180 \text{ litres/day}.$

3 4 vehicles consumes 120 gallons of petrol per day how much petrol will be used by 12 vehicles operating under the same condition.

4 vehicles use 120 gallons per day

1 Vehicle will use
$$\frac{120}{4}$$
 = 30 gallons/day

12 vehicles will use 12 x 30 = 360 gallons/day

This example is called simple proportion because only two quantities were used and the day is common for both ratios.

4 If 2 litres of petrol costs Rs 60. Find the cost of 50 litres.

Quantity of Petrol Cost of Petrol

2 litres Rs.60 So litres x

1 litre petrol $=\frac{60}{2}$ = Rs.30

50 litres petrol = $30 \times 50 = \text{Rs} \times 1500$

5 A 150mm dia gear meshes with 50mm dia gear. If the larger gear has 30 teeth. How many teeth will have the smaller gear have?

Geardia No. of Teeth
150 mm 30
50 mm $x = \frac{50}{150} \times 30 = 10$ teeth.

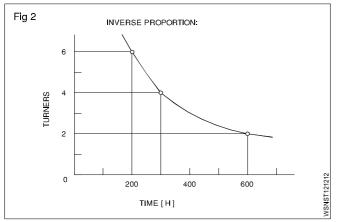
6 A mechanic assembles 7 machines in 2½ days. How long will it take time to assemble 70 machines at the same rate.

Machines Days

7 $2\frac{1}{2}$ 70 x $x = \frac{70 \times 2.5}{7} = 25 \text{ days}$

Assemble for 70 machines will take 25 days.

7 A roll of wire weighs 1.24 kg from this roll a piece of 3.7cm long is cut and it is found to weigh 2.93 gm. What is the length of the wire in the roll?


Weight of wire Length of wire 2.93 gm 3.7 cm 1.24 kg (1240 gm) x

$$x = \frac{1240}{2.93} \times 3.7 = 1566 \text{ cm}$$

Length of wire = 1566 cm.

Indirect or inverse proportion

The more in one the lesser other-Increase in one quantity will produce a decrease in the other. (Fig 2)

Example

1 4 turners finish a job in 300 hours. How much time will 6 turners take to do the same job?

Solution procedure in three steps:

Statement 4 turners taken = 300 hours

The time will reduce if 6 turners to do the same job. Therefore this is inverse proportion.

6 Turners = 200 hours

Result - The more the less.

2 8 workman take 6 days to complete a job. How many days it will take for 4 workman to complete the same job?

Vorkman	Days
8	6
4	x
x	$=\frac{8}{4} \times 6 = 12 \text{ days}$

4 workers complete the work = 12 days.

3 5 men working on a job finished it in 32 days. Find out in how many days 8 men will finish the same job?

Men		Da	/S
5		32	2
8		X	
	<u>x</u> =	$\frac{5 \times 32}{8}$	= 4 x 5 = 20 days

8 men will complete the job = 20 days.

4 An engine running at 150 rpm drives a shaft by pulley diameter is 55cm and that of the driven shaft pulley is 33 cm. Find the speed of the shaft?

Dia of pulley	Rpm of shaft
55 cm	150
33 cm	x
<i>x</i> =	$\frac{55 \times 150}{33}$ = 250 rpm.

Speed of the 33cm diameter will run 250 rpm.

5 A pulley of 80 cm diameter is rotating at 100 rpm and drives another pulley of 40 cm diameter. Find the rpm of driven pulley. If slip is 2.5% find the rpm?

Dia of pulley	Rpm of pulley
80 cm	100
40 cm	x
40 cm diameter	= 200 rpm.
Slip is 2.5%	= 195 rpm.

Problems involving both

Example

2 turners need 3 days to produce 20 pieces. How long will it take for 6 turners to produce 30 such pieces?

Statement

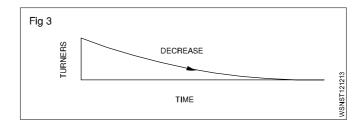
2 turners, 20 pieces = 3 days

6 turners, 30 pieces = how many days.

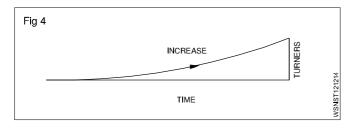
First step (Fig 3)

Statement 2 turners for 20 pieces = 3 days

1 turner for 20 pieces = $3 \times 2 = 6$ days


Multiple 6 turners for 20 pieces =
$$\frac{6}{6}$$
 = 1 day

Statement 6 turners for 20 pieces = 1 day


Single 6 turners for 1 piece =
$$\frac{1}{20}$$
 days

Multiple 6 turners for 30 pieces =
$$\frac{1}{20}$$
 x 30 = 1.5 days

Inverse proportion - More the less.

Second step (Fig 4)

Direct proportion - More the more.

Solve the problem by first writing the statement and proceed to single and then to the multiple according to the type of proportion that is involved.

Introduction

Proportional fundamentals, as applicable to motor vehicle calculations are discussed below.

Simple Proportion

Proportion

This is an equality between two ratios

Compound and Inverse proportions

· Compound proportions

Example

2

3

5 Fitter take 21 days to complete overhauling of 6 vehicles how long 7 Fitters will take to over haul 8 vehicles (Assume time of overhauling each vehicle is constant)

In this both direct and indirect proportions are used.

- 1 Fitter will overhauling 1 vehicle in days (shorter time).
- Quantities (No. of days) are taken in last as that is the answer required in this case.

Fitters	Vehicle	Days
5	6	21
7	8	x

$$\left(\frac{21\times5}{6\times7}\times8\right) = 20 \text{ days}$$

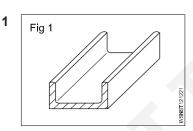
Ans: 7 Fitters will overhaul 8 vehicles in 20 days.

Inverse proportion

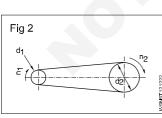
Some times proportions are taken inversely.

Examples

 If one water pump fills the fuel tank in 12 minutes, two pumps will take half the time taken.

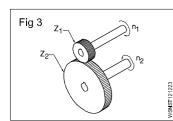

The time should not be doubled.

 2 pumps will take 30 minutes to fill up a tank how long will 6 similar pumps take this to fill this tank.

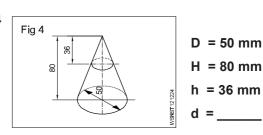

ump	Time
2	30
6	x

Ans: Time taken by 6 pumps = $\frac{30 \times 2}{6}$ = 10 minutes

Assignment



Length = 6.1 metre
Weight = 32 kgf
Weight of 1 metre of
the same channel
=____kgf



d₂ = 720 mm n₁ = 1200 rpm n₂ = _____ rpm

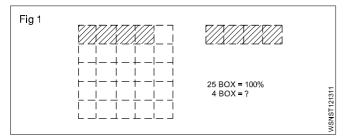
d, = 120 mm

 $Z_1 = 42 \text{ T}$ $n_2 = 96 \text{ rpm}$ $n_1 = 224 \text{ rpm}$ $Z_2 = ____ \text{T}$

- 5 If a mechanic assembles 8 machines in 3 days, how long he will take to assemble 60 machines.
- 6 In an auto shop the grinding wheel makes 1000 rpm and the driven pulley is 200 mm dia. If the driving pulley is 150 mm dia. Find out the rpm of the driving pulley.
- 7 In a gearing of a vehicle the following facts are found.

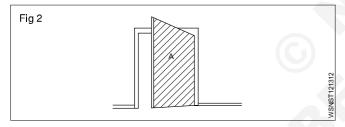
A 180 mm dia of gear meshes with 60mm dia gear. If the bigger gear makes 60 rpm. What will be the rpm of smaller gear.

8 A vehicular job is completed by 5 mechanics in 4 days. If only 3 mechanics are available, in how many days the work can be completed.


Square root, Ratio and Proportions, Percentage - Percentage

Percentage

Percentage is a kind of fraction whose denominator is always 100. The symbol for percent is %, written after the number. e.g. 16%.


Ex.
$$\frac{16}{100} = 0.16$$

In decimal form, it is 0.16. Percentage calculation also involves rule of three. The statement (the given data), for unit, and then to multiple which is for calculating the answer. (Fig 1)

Example

The amount of total raw sheet metal to make a door was 3.6 metre² and wastage was 0.18 metre². Calculate the % of wastage. (Fig 2)

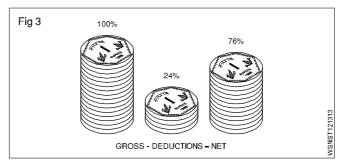
Solution procedure in three steps.

Statement:

Area of door (A) = $3.6 \text{ m}^2 = 100 \%$.

Wastage = 0.18 m²

Single: $\frac{100}{3.6}$ x 1 m²


Multiple: for 0.18 m²= $\frac{100}{3.6}$ x 0.18. Wastage = 5%.

Analyse the given data and proceed to arrive at the answer through the unit.

Example

A fitter receives a take-home salary of 984.50 rupees.

If the deduction amounts to 24%, what is his total salary? (Fig 3)

Total pay 100%

Deduction 24%

Take home salary 76%

If the take home pay is Rs.76, his salary is 100.

For 1% it is
$$\frac{1}{76}$$

For Rs.984.50, it is
$$\frac{1}{76}$$
 x 984.50.

For 100% it is
$$\frac{984.50}{76}$$
 X100 = 1295.39

100% i.e. gross pay = Rs.1295.40.

Example 1

75 litres of oil is taken out from a oil barrel of 200 litres capacity. Find out the percentage taken in this.

Solution

% of oil taken = Oil taken out (litres) / Capacity of Barrel (litres) x 100

$$=\frac{75}{200} \times 100 = 37\frac{1}{2}\%$$

Example 2

A spare part is sold with 15%. Profit to a customer, to a price of Rs.15000/-. Find out the following (a) What is the purchase price (b) What is the profit.

Solution: CP = x,

CP = cost price

SP = sale price

SP=CP+15%of CP

$$15000 = x + \frac{15 x}{100} = \frac{100 x + 15 x}{100}$$

$$x = \frac{1500000}{115} = 13043.47$$

Profit = SP-CP = 15000-13043.47 = 1956.53

Purchase price = Rs.13,043/,Profit = Rs. 1957

Example 3

Out of 80000 cars, which were tested on road, only 16000 cars had no fault. What is the percentage in this acceptance.

$$= \frac{16000}{80000} \times 100 = \frac{100}{5} = 20\%$$

Example 4

The price of a motor cycle dropped to 92% of original price and now sold at Rs.18000/- What was the original price.

Solution

Present price of Motor cycle Rs.18000

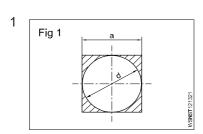
This is the value of 92% of original price

Original Price =
$$18000 \times \frac{100}{92} = \frac{1800000}{92}$$

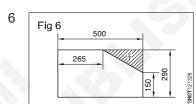
= Rs.19565

Example 5

A Motor vehicle uses 100 litres of Petrol per day when travelling at 30 kmph. After top overhauling the consumption falls to 90 litres per day. Calculate percentage of saving.

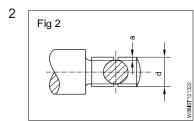

Percentage of saving = Decrease in consumption/Original consumption x 100

$$=(100-90)\frac{\text{litres}}{100} \times 100$$


$$=\frac{10}{100} \times 100$$

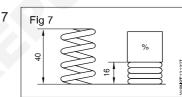
= 10% Saving in fuel.

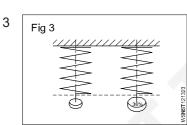
Assignment



a = 400mm (side of square)

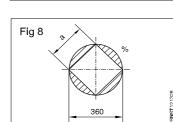
Shaded portion



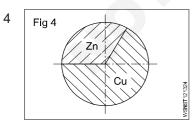

d = 26mm'a' depth of u/cut = 2.4mm

reduction of area at

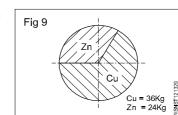
Compression length =

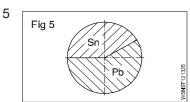

Percentage of increase = 36%

Value of increase


= 611.2 N/mm²

Original tensile strength


$$=$$
 N/mm².


d = 360 mm $a = 0.707 \times d$ Wastage = %.

Copper in alloy = 27 kg Zinc in alloy = 18 kg

Cu = 36 Kg

Weight of alloy = 140

Weight of Sn 40%

$$Pb =$$
____Kgf $Sn =$ Kgf.

Cu = 42.3 Kg

$$Sn = 2.7 Kg$$

10

Fig 10

Workshop Calculation & Science - Spinning Technician Exercise 1.3.14

Material science - Types of metal, types of ferrous and non ferrous metals

Types of metals

The metals is of two types:

- 1 Ferrous metal
- 2 Non-ferrous metal
- 1 Ferrous metals: The metals that contains major part of iron and contain carbon are called ferrous metals such as pig iron, mild steel, nickel etc., they have iron properties such as rusting, magnetisations etc.
- 2 Non-ferrous metals: The metals that do not contains iron or carbon and do not have the property of iron are called non-ferrous metals such as copper, aluminum etc.

Ferrous and Non ferrous alloys

Alloying metals and ferrous alloys

An alloy is formed by mixing two or more metals together by melting.

For ferrous metals and alloys, iron is the main constituent metal. Depending on the type and percentage of the alloying metal added, the property of the alloy steel will vary.

Metals commonly used for making alloy steels Nickel (Ni)

This is a hard metal and is resistant to many types of corrosion rust.

It is used in industrial applications like nickel, cadmium batteries, boiler tubes, valves of internal combustion engines, engine spark plugs etc. The melting point of nickel is 1450°C. Nickel can be magnetised. In the manufacture of permanent magnets a special nickel steel alloy is used. Nickel is also used for electroplating. Invar steel contains about 36% nickel. It is tough and corrosion resistant. Precision instruments are made of Invar steel because it has the least coefficient of expansion.

Nickel-steel alloys are available containing nickel from 2% to 50%.

Chromium (Cr)

Chromium, when added to steel, improves the corrosion resistance, toughness and hardenability of steel. Chromium steels are available which may contain chromium up to 30%.

Chromium, nickel, tungsten and molybdenum are alloyed for making automobile components and cutting tools.

Chromium is also used for electroplating components. Cylinder liners are chrome-plated inside so as to have wear resistance properties. Stainless steel contains about 13% chromium. Chromium-nickel steel is used for bearings. Chrome-vanadium steel is used for making hand tools like spanners and wrenches.

Manganese (Mn)

Addition of manganese to steel increases hardness and strength but decreases the cooling rate.

Manganese steel can be used to harden the outer surface for providing a wear resisting surface with a tough core. Manganese steel containing about 14% manganese is used for making agricultural equipment like ploughs and blades.

Silicon (Si)

Addition of silicon for alloying with steel improves resistance to high temperature oxidation.

This also improves elasticity, and resistance against corrosion. Silicon alloyed steels are used in manufacturing springs and certain types of steel, due to its resistance to corrosion. Cast iron contains silicon about 2.5%. It helps in the formation of free graphite which promotes the machinability of cast iron.

Tungsten (W)

The melting temperature of tungsten is 3380° C. This can be drawn into thin wires.

Due to this reason it is used to make filaments of electric lamps.

Tungsten is used as an alloying metal for the production of high speed cutting tools. High speed steel is an alloy of 18% tungsten, 4% chromium and 1% vanadium.

Stellite is an alloy of 30% chromium, 20% tungsten, 1 to 4% carbon and the balance cobalt.

Vanadium (Va)

This improves the toughness of steel. Vanadium steel is used in the manufacture of gears, tools etc. Vanadium helps in providing a fine grain structure in tool steels.

Chrome-vanadium steel contains 0.5% to 1.5% chromium, 0.15% to 0.3% vanadium, 0.13% to 1.10% carbon.

This alloy has high tensile strength, elastic limit and ductility. It is used in the manufacture of springs, gears, shafts and drop forged components.

Vanadium high speed steel contains 0.70% carbon and about 10% vanadium. This is considered as a superior high speed steel.

Cobalt (Co)

The melting point of cobalt is 1495°C. This can retain magnetic properties and wear- resistance at very high temperatures. Cobalt is used in the manufacture of magnets, ball bearings, cutting tools etc. Cobalt high speed steel (sometimes known as super H.S.S.) contains about 5 to 8% cobalt. This has better hardness and wear resistance properties than the 18% tungsten H.S.S.

Molybdenum (Mo)

The melting point of molybdenum is 2620°C. This gives high resistance against softening when heated. Molybdenum high speed steel contains 6% of molybdenum, 6% tungsten, 4% chromium and 2% vanadium. This high speed steel is very tough and has good cutting ability.

Cadmium (cd)

The melting point of cadmium is 320°C. This is used for coating steel components.

Alloying Metals and Non Ferrous Alloys

Non-ferrous Metals And Alloys

Copper and its alloys

Metals without iron are called non-ferrous metals. Eg. Copper, Aluminium, Zinc, Lead and Tin.

Copper

This is extracted from its ores 'MALACHITE' which contains about 55% copper and 'PYRITES' which contains about 32% copper.

Properties

Reddish in colour. Copper is easily distinguishable because of its colour.

The structure when fractured is granular, but when forged or rolled it is fibrous.

It is very malleable and ductile and can be made into sheets or wires.

It is a good conductor of electricity. Copper is extensively used as electrical cables and parts of electrical apparatus which conduct electric current.

Copper is a good conductor of heat and also highly resistant to corrosion. For this reason it is used for boiler fire boxes, water heating apparatus, water pipes and vessels in brewery and chemical plants. Also used for making soldering iron.

The melting temperature of copper is 1083° C.

The tensile strength of copper can be increased by hammering or rolling.

Copper Alloys

Brass

It is an alloy of copper and zinc. For certain types of brass small quantities of tin or lead are added. The colour of brass depends on the percentage of the alloying elements. The colour is yellow or light yellow, or nearly white. It can be easily machined. Brass is also corrosion-resistant.

Brass is widely used for making motor car radiator core and water taps etc. It is also used in gas welding for hard soldering/brazing. The melting point of brass ranges from $880 \text{ to } 930^{\circ}\text{C}$.

Brasses of different composition are made for various applications.

Bronze

Bronze is basically an alloy of copper and tin. Sometimes zinc is also added for achieving certain special properties. Its colour ranges from red to yellow. The melting point of bronze is about 1005°C. It is harder than brass. It can be easily machined with sharp tools. The chip produced is granular. Special bronze alloys are used as brazing rods.

Bronze of different compositions are available for various applications.

Lead and its alloys

Lead is a very commonly used non-ferrous metal and has a variety of industrial applications.

Lead is produced from its ore 'GALENA'. Lead is a heavy metal that is silvery in colour when molten. It is soft and malleable and has good resistance to corrosion. It is a good insulator against nuclear radiation. Lead is resistant to many acids like sulphuric acid and hydrochloric acid.

It is used in car batteries, in the preparation of solders etc. It is also used in the preparation of paints.

Lead Alloys

Babbitt metal

Babbitt metal is an alloy of lead, tin, copper and antimony. It is a soft, anti-friction alloy, often used as bearings.

An alloy of lead and tin is used as 'soft solder'.

Zinc and its alloys

Zinc is a commonly used metal for coating on steel to prevent corrosion. Examples are steel buckets, galvanized roofing sheets, etc.

Zinc is obtained from the ore-calamine or blende.

Its melting point is 420° C.

It is brittle and softens on heating; it is also corrosion-resistant. Due to this reason it is used for battery containers and is coated on roofing sheets etc.

Galvanized iron sheets are coated with zinc.

Tin and tin alloys

Tin

Tin is produced from cassiterite or tinstone. It is silvery white in appearance, and the melting point is 231° C. It is soft and highly corrosion-resistant.

It is mainly used as a coating on steel sheets for the production of food containers. It is also used with other metals, to form alloys.

Example: Tin with copper to form bronze. Tin with lead to form solder. Tin with copper, lead and antimony to form Babbitt metal.

Aluminium

Aluminium is a non-ferrous metal which is extracted from 'BAUXITE'. Aluminium is white or whitish grey in colour. It has a melting point of 660° C. Aluminium has high electrical and thermal conductivity. It is soft and ductile, and has low tensile strength. Aluminium is very widely used in aircraft industry and fabrication work because of its lightness. Its application in the electrical industry is also on the increase. It is also very much in use in household heating appliances.

Workshop Calculation & Science - Spinning Technician Exercise 1.3.15

Material science - Introduction of iron and cast iron

Ferrous Metals

Metals which contain iron as a major content are called ferrous metals. Ferrous metals of different properties are used for various purposes.

Introduction of Iron, Cast Iron, wrought Iron and steel

The ferrous metals and alloys used commonly are:

- · Pig-iron
- Cast Iron
- · Wrought Iron
- · Steels and Alloy steels

Different processes are used to produce iron and steel.

Pig-iron (Manufacturing process)

Pig-iron is obtained by the chemical reduction of iron ore. This process of reduction of the iron ore to Pig-iron is known as SMELTING.

The main raw materials required for producing Pig-iron are:

- Iron ore
- Coke
- Flux

Iron ore

The chief iron ores used are:

- · magnetite
- · hematite
- · limonite
- · carbonite.

These ores contain iron in different proportions and are naturally available.

Coke

Coke is the fuel used to give the necessary heat to carry on the reducing action. The carbon from the coke in the form of carbon monoxide combines with the iron ore to reduce it to iron.

Flux

This is the mineral substance charged into a blast furnace to lower the melting point of the ore, and it combines with the non-metallic portion of the ore to form a molten slag.

Limestone is the most commonly used flux in the blast furnace.

Properties and use of Pig-iron

Pig-iron is, therefore, refined and remelted and used to produce other varieties of iron and steel.

Cast Iron (Manufacturing process)

The pig-iron which is tapped from the blast furnace is the crude form of raw material for the cupola, and should be further refined for making castings. This refining is carried out in the cupola furnace which is a small form of a blast furnace.

Generally cupolas are not worked continuously like blast furnaces but are run only as and when required.

Cast Iron (Types)

Cast iron is an alloy of iron, carbon and silicon. The carbon content ranges from 2 to 4%.

Types of cast iron

The following are the types of cast iron.

- Grey cast iron
- White cast iron
- Malleable cast iron
- Nodular cast iron

Grey cast iron

This is widely used for the casting of machinery parts and can be machined easily.

Machine base, tables, slideways are made of cast iron because it is dimensionally stable after a period of aging.

Because of its graphite content, cast iron provides an excellent bearing and sliding surface.

The melting point is lower than that of steel and as grey cast iron possesses good fluidity, intricate casting can be made.

Grey cast iron is widely used for machine tools because of its ability to reduce vibration and minimize tool chatter.

Grey cast iron, when not alloyed, is quite brittle and has relatively low tensile strength. Due to this reason it is not used for making components subjected to high stress or impact loads.

Grey cast iron is often alloyed with nickel, chromium, vanadium or copper to make it tough.

Grey cast iron is weldable but the base metal needs preheating.

White cast iron

This is very hard and is very difficult to machine, and for this reason, it is used in components which should be abrasion-resistant.

White cast iron is produced by lowering the silicon content and by rapid cooling. When cooled in this manner, it is called chilled cast iron.

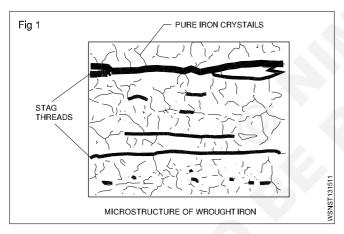
White cast iron cannot be welded.

Malleable cast iron

Malleable cast iron has increased ductility, tensile strength and toughness when compared with grey cast iron.

Malleable cast iron is produced from white cast iron by a prolonged heat-treatment process lasting for about 30 hours.

Nodular cast iron


This is very similar to malleable cast iron. But this is produced without any heat treatment. Nodular cast iron is also known as: **Nodular Iron - Ductile Iron - Spheroidal Graphite Iron**

This has good machinability, castability, resistance to wear, low melting point and hardness.

Malleable and nodular castings are used for machine parts where there is a higher tensile stress and moderate impact loading. These castings are less expensive and are an alternative to steel castings.

Wrought Iron (Manufacturing process) (Fig 1)

Wrought iron is the purest form of iron. The analysis of Wrought iron shows as much as 99.9% of iron. (Fig 1) When heated, wrought iron does not melt, but only becomes pasty and in this form it can be forged to any shape.

Modern methods used to produce wrought iron in large quantities are the

- puddling process
- aston or Byers process

Steel

This is pure iron. Carbon content is more. Due to excessive carbon it is harder and tougher. Carbon content is from 0.15 to 1.5%. Besides there are other impurities like sulphur, phosphorous etc. are there which cannot be separated. This is hardened and tempered by heating it to a definite temperature and cooling it in oil or water.

The following methods are adopted for making different types of steel:

1 Cementation process 2 Crucible process

3 Bessemer process 4 Open hearth process

5 Electro thermo process 6 High frequency process.

Types of steel

Main two types of steel are:

- 1 Plain steel
- 2 Alloy steel
- 1 Plain steel. In this carbon and iron are mixed. According to the percentage of carbon plain steels are classified as:
 - A Low carbon steel
 - B Medium carbon steel
 - C High carbon steel
 - A Low carbon steel: It is also called mild steel. In this. the percentage of carbon is from 0.15% to 0.25%. Due to less quantity of carbon is sufficiently soft and tolerates the strain. It can be put in different shapes through forging and rolling. This is not very hard or strong. This cannot be hardened or tempered by ordinary methods. Nuts, bolts, rivets, sheets, wires, T-iron and angle iron etc. are made out of it.
 - B Medium carbon steel: The carbon content is from 0.25% to 0.5%. Due to excess of carbon, it is harder and tougher than mild steel. The tenacity is more. This can be hardened or tempered. Various things are made by forging and rolling. This is used for making high tensile tubes, wires, agricultural implements, connecting rods, cam shafts, spanners, pulleys etc.
 - C High carbon steel: It has carbon content from 0.5% to 1.5%. It is very hard and wears least. This can be hardened by heat treatment. This can neither be cast nor rolled. This is very hard and tough. It acquires permanent magnetic properties. This is used for making pointed tools, springs, pumps, files, cutleries, cold chisels press die etc.

2 Alloy Steel

When the steel is mixed with other metals like vinoleum, manganese tungsten etc., it is called an alloy steel. Alloy steel has properties of its ingredients.

Types of Alloy Steel

Two types of alloy steel are:

- A Low alloy steel
- B High alloy steel
- A Low Alloy steel: Besides carbon other metals are in lesser quantity. Its tensile strength is more. The welding can work on it. This can also be hardened and tempered. It is used in manufacturing various parts of an aeroplane and cam shaft etc.
- **B** High Alloy Steel: Besides carbon it has a high percentage of the metals higher than low steel alloy. This is classified into following types:

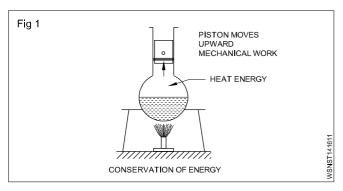
- a High Speed Steel: It is also called high tungsten alloy steel because it has more quantity of tungsten. According to the quantity of tungsten it is classified into three types:
 - 1 Tungsten 22%, Chromium 4%, Vanadium 1%
 - 2 Tungsten 18%, Chromium 4%, Vanadium 1%
 - 3 Tungsten 14%, Chromium 4%, Vanadium 1%

Cutting tools are made out of it because it is very hard but becomes soft at low critical temperature. This temperature is raised out of cutting process of tool, then the cutting tool becomes useless and is unfit for work. But due to high percentage of tungsten it keeps working upto high temperature. It is used for cutting tools, drills, cutters, reamers, hacksaw blades etc.

- b Nickel Steel: In this 0.3% carbon and 0.25 to 0.35% nickel is present. Due to nickel its tensile strength, elastic limit and hardness is increased. It does not catch rust. Its cutting resistance increases 6 times more than plain carbon and steel due to 0.35% nickel present in it. This is used for making rivets, pipes, axle shafting, parts of buses and aeroplanes. If 5% of cobalt is mixed with 30-35% nickel, it becomes invar steel. It is mainly used for making precious instruments.
- c Vanadium Steel: It contains 1.5% carbon 12.5% tungsten, 4.5% chromium, 5% vanadium and 5% cobalt. Its elastic limit, tensile strength and ductility is more. It has strength to bear sharp jerks. It is mainly used to manufacture of tools.
- **d Manganese Steel:** It is also called special high alloy steel. It contains 1.6 to 1.9% of manganese

- and 0.4 to 0.5% carbon. It is hard and less wear. It is not affected by magnet. It is used in grinders and rail points etc.
- e Stainless Steel: Along with iron it contains 0.2 to 90.6% carbon, 12 to 18% chromium, 8% nickel and 2% molybdenum. It is used for making knives, scissors, utensils, parts of aeroplane, wires, pipes and gears etc.

Properties of stainless steel:


- 1 Higher corrosion resistance
- 2 Higher cryogenic toughness
- 3 Higher work hardening rate
- 4 Higher hot strength
- 5 Higher ductility
- 6 Higher strength and hardness
- 7 More attractive appearance
- 8 Lowermaintenance
- f Silicon Steel: It contains 14% of silicon. Its uses are multifarious according to the percentage of silicon. 0.5% to 1% silicon, 0.7 to 0.95% manganese mixture is used for construction work. 2.5 to 4% silicon content mixture is used for manufacturing electric motors, generators, laminations of transformers. In chemical industries 14% silicon content mixture is used.
- g Cobalt Steel: High carbon steel contains 5 to 35% cobalt. Toughness and tenacity is high. It has magnetic property therefore used to make permanent magnets.

Workshop Calculation & Science - Spinning Technician Exercise 1.4.16

Heat & Temperature and Pressure - Concept of heat and temperature, effects of heat, difference between heat and temperature, boiling point & melting point of different metals and non-metals

Heat

It is a form of energy. Heat energy can be transformed into other forms of energies. Heat flows from a hotter body to a colder body. (Fig 1)

Units of heat

Calorie: It is the quantity of heat required to raise the temperature of 1 gram of water through 1°C.

BTHU: It is the quantity of heat required to raise 1 lb of water through 1°F. (British thermal unit).

C.H.U; It is the quantity of heat required to raise 1 lb of water through 1°C.

Joule: S.I. Unit (1 Calorie = 4.186 joule)

Effects of heat

- · Change in temperature
- Change in size
- · Change in state
- · Change in structure
- Change in Physical properties

Specific heat

The quantity of heat required to raise the temperature of one gm of a substance through 1°C is called specific heat. It is denoted by the letter 's'.

= 1
= 0.22
= 0.1
= 0.12

Thermal capacity:

It is the amount of heat required to raise the temperature of a substance through 1°C is called the thermal capacity of the substance.

Thermal capacity = ms calories.

Calorific value: The amount of heat released by the complete combustion of unit quantity of the fuel (Mass or volume) is known as calorific value of fuels.

Water equivalent

It is the mass of water which will absorb the same amount of heat as the given substance for the same temperature rise. Water equivalent = Mass of the substance x specific heat of the substance.

Therefore water equivalent = ms

Types of heat

- 1 Sensible heat
- 2 Latentheat

1 Sensible heat

Sensible heat is the heat absorbed or given off by a substance without changing its physical state. It is sensible and can be absorbed by the variation of temperature in the thermometers.

2 Latent heat

The heat gained or given by the substance during a change of state (from solid to liquid to gas) is called latent heat or hidden heat. The heat absorbed or given off does not cause any temperature change in the substance.

Types, 1. Latent heat of fusion of solid

2. Latent heat of vaporisation of solid.

1 Latent heat of fusion of solid

The amount of heat required per unit mass of a substance at melting point to convert it from the solid to the liquid state is called latent heat of fusion of solid. Its unit is cal/gram.

Latent heat of fusion of ice

The amount of heat required to convert per unit mass of the ice into water at 0°C temperature is called latent heat of fusion of ice.

Latent heat of fusion of ice(L) = 80 cal/gram

2 Latent heat of vaporisation of liquid

The amount of heat required to vaporise a unit mass of liquid at its boiling point is called latent heat of vaporisation.

Latent heat of vaporisation of water or latent heat of steam

The amount of heat required to convert into steam of a unit mass of water at its boiling point (100°C) is called latent heat of vaporisation of water or latent heat of steam.

Latent heat of steam(L) = 540 cal/gram

Temperature

It is the degree of hotness or coldness of a body. The temperature is measured by thermometers.

Difference between heat and temperature

Heat	Temperature			
1 It is a form of energy.	This tells the state of heat.			
2 Its unit is calorie.	Its unit is degree.			
3 Heat is measured by calorimeter.	Temperature is measured by thermometer.			
4 By adding quantity of heat of two substances their total heat can be calculated.	By adding two temperatures we cannot find the temperature of the mixture.			
5 By heating a substance the quantity of heat is increased regardless of increase in temperature.	Two substances may read the same temperature though they might be having different amount of heat in them.			

Boiling point

Any substance starts turning into a gas shows the temperature at which it boils this is known as the boiling point. The boiling point of water is 100° C.

Melting point

The temperature at which any solid melts into liquid or liquid freezing to solid is called the melting point of substance. `The melting point of ice is 0°C.

List of melting point and boiling point of metals and Non -metals

Metals and Non-metals	Melting point °C	Boiling point °C
Aluminium	660.25	2519
Argon	-189.19	-185.85
Arsenic	817	614
Barium	729	1897
Beryllium	1287	2469
Bromine	-7.1	58.8
Cadmium	321.18	767
Calcium	839	1484
Carbon (diamond)	3550	4827
Carbon (graphite)	3675	4027
Chlorine	-100.84	-34.04
Cobalt	1495	2927
Copper	1084.6	2562
Gold	1064.58	2856
Helium	-	-268.93
Hydrogen	-259.98	-252.87
lodine	113.5	184.3
Iridium	2443	4428
Iron	1535	2861
Lead	327.6	1749
Lithium	180.7	1342
Magnesium	650	1090

Metals and Non-metals	Melting point °C	Boiling point °C
Manganese	1246	2061
Mercury	-38.72	357
Molybdenum	2617	4639
Nickel	1453	2913
Nitrogen	-209.86	-195.79
Oxygen	-226.65	-182.95
Phosphorus (white)	44.1	280
Plutonium	640	3228
Potassium	63.35	759
Radium	700	1737
Silicon	1410	3265
Silver	961	2162
Sodium	98	883
Sulfur	115.36	444.6
Tin	232.06	2602
Titanium	1660	3287
Tungsten (wolfram)	3422	5555
Uranium	1132	4131
Zinc	419.73	907

Workshop Calculation & Science - Spinning Technician Exercise 1.5.17

Basic Electricity - Introduction and uses of electricity, molecule, atom, how electricity is produced, electric current AC,DC their comparison, voltage, resistance and their units

Electricity is a kind of energy. It is the most useful sources of energy which is not visible but its presence can be felt by its effects. Electricity is obtained by conversion of other forms of energy like heat energy, chemical energy, nuclear energy, mechanical energy and energy stored in water etc.,

To understand electricity, one must understand the structure of an atom.

Basically an atom contains electrons, protons and neutrons. The protons and neutrons are located in the centre of an atom and the electrons, a negative electric charge particle revolving around the nucleus in an atom. The proton has a positive charge. Neutrons are neutral and have no charge.

Sources of electricity

Battery

Battery stores electrical energy in the form of chemical energy and it gives power when required. Battery is used in automobiles and electronics, etc.,

Generator

It is a machine which converts the mechanical energy into electrical energy.

When a conductor rotates between a magnetic field using prime mover an emf will be induced. By using this method all types of AC and DC generator - generates power.

E.g. Thermal power station

Hydro power station

Nuclear power station

Wind power station

Solar power station

Thermo couple

If two dissimilar pieces of metals are twisted together and its joined end is heated in a flame, then a potential difference or voltage will be induced across the ends of the wires. Such a device is known as a Thermo couple. Thermo couple is used to measure very high temperature of furnaces.

Effects of electric current

When an electric current flows through a medium, its presence can be felt by its effects, which are given below.

1 Physical effect

Human body is a good conductor. when the body touches the bare current carrying conductor, current flows through the human body to earth and body gets severe shock or cause even death in many cases.

2 Magnetic effect

When an electric current passes through a coil, a magnetic field is produced around it.

E.g.: Electromagnet Motor, Generator, Electric bell

3 Chemical effect

When an electric current passes through an electrolyte, chemical action takes place. Because of that, an electrical energy is stored in a battery as a chemical energy.

E.g.: Electroplating, Cells and battery charging, refining of metals etc.,

4 Heating effect

When an electric current passes through any conductor, heat is produced in the conductor due to its resistance.

E.g.: Electric heater, Electric iron box, Electric lamp, Geyser, Soldering iron, Electric kettles, Electric welding etc.,

5 X-ray and Laser rays effect

When a high frequency voltage is passed through a vacuum tube, a special type of rays come out, which is not visible. These rays are called x-rays. Laser rays also can be produced by electric current.

6 Gas effect

When electrons pass through a certain type of sealed glass shell containing gas, then it emits light rays.

E.g: Mercury vapour lamp, Sodium vapour lamp, Fluorescent lamp, Neon lamp etc.,

Uses of Electricity

1 Lighting - Lamps

2 Heating - Heaters, ovens

3 Power - Motor, fan

4 Traction - Electromotive, lift, crane

5 Communication - Telephone, telegraph, radio, wireless

6 Entertainment - Cinema, radio, T.V.

7 Medical - x-rays, shock treatment

8 Chemical - Battery charging, electroplating

9 Magnetic - Temporary magnets

10 Engineering - Magnetic chucks, welding, x-rays of welding

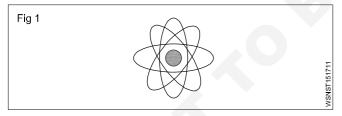
Classification

- Static electricity
- · Dynamic electricity

STATIC ELECTRICITY

If a dry glass rod is rubbed with silk cloth the glass rod gives out negative electrons, and therefore, becomes positively charged. The silk cloth receives negative electrons and therefore it becomes negatively charged. They acquire the property of attracting small pieces of paper etc. because like charges repel and unlike charges attract each other. The electric charge on the silk cloth is stationary and is called static electricity. This type of electricity cannot be transmitted from one place to another.

DYNAMIC ELECTRICITY


The electrons in motion are called current electricity or electric current. This type of electricity is carried through wires and cables. Therefore, this electricity can be transmitted from one place to another. This type of electricity can be produced by cells, batteries, generators alternators etc.

What is the difference between an atom and an element? How are molecules different from atoms? I am often asked these questions in my sessions over and over again and so I finally decided to write a comprehensive post on them. Find answers to all your questions in this section that is designed to help students explore and understand the relationship between atoms, elements, molecules, compounds and mixtures in a manner that is simple and easy to understand.

What is an Atom?

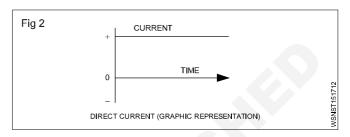
All the matter in the universe is made of tiny particles called atoms. There are 92 different kinds of atoms in nature. These 92 different atoms combine with one another to form different kinds of matter that we see in nature. (Fig 1)

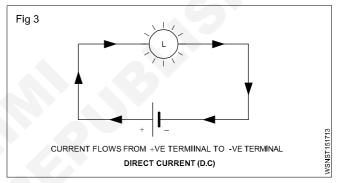
Gold, for example, is made of only gold atoms. When matter is made of only one kind of atom, it is called an element. In the same way, silver is another element which is made of only silver atoms. Because there are 92 different kinds of atoms in nature, there are 92 different kinds of elements. Other examples of an atom are K (potassium) and Fe (iron).

What is a Molecule?

A molecule is the smallest unit of a chemical compound and it exhibits the same chemical properties of that specific compound. As molecules are made up of atoms jointly held by chemical bonds, they can vary greatly in terms of complexity and size. The oxygen we breathe has a molecular formula $\rm O_2$. Should we consider this as an element or compound? When two or more atoms of the same elements combine together, we call them Molecules. So, we call $\rm O_2$ as an oxygen molecule. In the same way, we find hydrogen molecules $\rm H_2$, chlorine molecules $\rm Cl_2$ and others in nature.

Types of electric current


- Direct current
- Alternating current


Direct current

In direct current (DC) the direction and magnitude of the current does not change (Fig 2). The steady current flow will be from the positive terminal to the negative terminal. (Fig 3)

Examples

DC Sources: Cells, batteries and DC generators (Fig 3)

Alternating current (Fig 4)

The current flow will be from the phase terminal to the Neutral terminal. In the alternating current (AC) both the direction and magnitude of the current will be changing at definite intervals of time. The graph shows how an AC current or voltage changes with time. The current increases to the maximum value in one direction, falls to zero and increases to the maximum value in the other (opposite) direction before falling to zero again. Thus a cycle is one complete series of changes. The normal supply frequency is 50 cycles per second.

Difference between AC and DC

	AC	DC
1	It is generated in the ranges of 6,600 V, 11000 V and 33,000 V.	It is generated up to 6,600 V only
2	Voltage can be stepped up or stepped down by using transformer	It is not possible
3	Transmission cost is less	Cost High
4	Less maintenance	High maintenance
5	Power up to 5,00,000 kw can be generated in a single alternator.	Power up to 10,000 kw can be generated in a single generator
6	AC generator can run at high speeds. So, speed control is not easy.	It can't run at high speeds. Speed control is easy.
7	Slip rings and brushes are used to collect the current.	Commutator and brushes are used to collect the current

Advantages of A.C.

- i In transmission there is saving in copper wire.
- ii Since there is no spark in A.C. machine there is no interference in Radio sound.
- iii This can be produced to maximum voltage i.e. 33000 volts.
- iv Voltage can be dropped or raised with the help of transformers.
- v Its mechanism is simple and cheap.
- vi Output is more due to availability of more than one phase.

Disadvantages of A.C.:

- i A single phase motor is not self-starter.
- ii Due to thin wire in A.C., the voltage drop is more.
- iii It cannot be used for electroplating and in charging secondary cells.
- iv The speed of motors run by it is difficult to change.
- v There is danger to security due to high voltage.

Electrical terms and units

Quantity of electricity

The strength of the current in any conductor is equal to the quantity of electrical charge that flows across any section of it in one second. If 'Q' is the charge and 't' is the time taken

then
$$I = \frac{Q}{t}$$
 $Q = I \times t$

The SI unit of current is coulomb. Coulomb is equivalent to the charge contained in nearly 6.24 x 10¹⁸ electrons.

Coulomb

In an electric circuit if one Ampere of current passes in one second, then it is called one coulomb. It is also called ampere second (As). Its larger unit is ampere hour (AH)

Electro motive force (EMF)

It is the force which causes to flow the free electrons in any closed circuit due to difference in electrical pressure or potential. It is represented by 'E.' Its unit is Volt.

Potential difference (P.D)

This is the difference in electrical potential measured across two points of the circuit. Potential difference is always less than EMF. The supply voltage is called potential difference. It is represented by V.

Voltage

It is the electric potential between two lines or phase and neutral. Its unit is volt. Voltmeter is used to measure voltage and it is connected parallel between the supply terminals.

Volt

It is defined as when a current of 1 ampere flows through a resistance of 1 ohm, it is said to have potential difference of 1 volt.

Current

It is the flow of electrons in any conductor is called current. It is represented by 'I' and its unit is Ampere. Ammeter is used to measure the current by connecting series with the circuit.

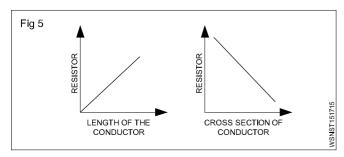
Ampere

When 6.24×10^{18} electrons flow in one second across any cross section of any conductor, the current in it is one ampere.(or) If the potential difference across the two ends of a conductor is 1 volt and the resistance of conductor is 1 ohm then the current through is 1 ampere.

Resistance

It is the property of a substance to oppose to the flow of electric current through it, is called resistance. Symbol: R, Unit: Ohm (Ω) , Ohm meter is used to measure the resistance.

Ohm


If the potential difference across the two ends of conductor is 1 volt and the current through it is 1 ampere, then the resistance of the conductor is 1 Ohm.

Laws of resistance

The resistance offered by conductor depends on the following factors.

The resistance of the conductor

- 1 is directly proportional to the length of the conductor (R α L)
- 2 Varies inversely proportional to its cross sectional area of the conductor $\left(R \ \alpha \ \frac{1}{A}\right)$
- 3 Depends on the material with which it is made.

4 depends on the temperature of the conductor

$$R \quad \alpha \quad L ; \quad R \quad \alpha \quad \frac{1}{A}; \quad R \quad \alpha \quad \frac{L}{A}; \quad R \quad = \quad \rho \frac{L}{A}$$

Specific resistance

The specific resistance of a material is the resistance offered to a current it passed between the opposite faces of the unit cube of the material. Specific resistance is measured in Ohm - m or micro ohm - cm.

Each material has its own specific resistance or resistivity.

E.g. : Copper - 1.72 $\mu\Omega$ cm, Silver - 1.64 $\mu\Omega$ cm, Eureka - 38.5 $\mu\Omega$ cm, Iron - 9.8 $\mu\Omega$ cm, Aluminium - 2.8 $\mu\Omega$ cm, Nickel - 7.8 $\mu\Omega$ cm.

 $R = \frac{\rho I}{A} \text{ ohm cm}$

R = Resistance in ohms

I = Length of the conductor in cm

ρ = Specific Resistance in ohm cm
(symbol pronounced as rho)

A = Area of cross - section in cm²

Electric Power

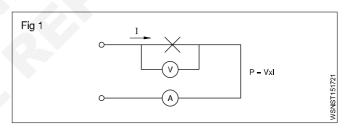
In mechanical terms we defined power as the rate of doing work. The unit of power is Watt. In an electrical circuit also the unit of electrical power is 1 Watt. In mechanical terms

1 Watt is the work done by a force of 1 N to move the body through 1 metre in one second. In an electrical circuit, the electromotive force overcomes the resistance and does work. The rate of doing work depends upon the current flowing in the circuit in amperes. When an e.m.f of one volt causes a current of 1 ampere to flow the power is 1 Watt.

Hence Power = Voltage x Current

Power in Watts = Voltage in Volts x Current in Amperes

Electric work, energy

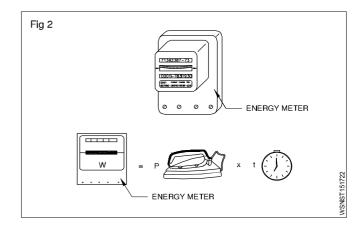

Electrical work or energy is the product of electrical power and time

Work in Watt seconds = Power in Watts x time in sec $W = P \times t$

Since 1 joule represents 1 Watt x 1 sec, which is very small, larger units such as 1 Watt hour and 1 kilowatt hour are used.

1 W.h = 3600 Watt sec. 1 Kwh = 1000 Wh = 3600000 Watt sec FPS System Metric System 1 HP = 746 watts = 0.746 K.W = 0.7356 K.W

Note: The charge for electric consumption is the energy cost per Kwh and it varies according to the country and states.


V - Voltage (Volts) V

i - Current Intensity (Amperes) A

P - Power (Watts, Kilowatts) W, kW

W - Work, Energy (Watt hour, Kilowatt hour) wh, Kwh

t - time (hours) h

Table of analogies between mechanical and electrical quantities

Mechanical quantity	Unit	Electrical quantity	Unit
Force 'F'	N	Voltage 'V'	V
Velocity $v = \frac{\text{Displacement}}{\text{Time}}$	m/s	Current I	А
Time t	seconds	Time t	seconds
Power P = F x v	N m/sec	Power P = V x i	W = V x A
Energy = F x v x t	j = Nm	Energy $W = V \times i \times t$	$j = W \times s$

$$W = VI$$

$$= I^{2}R$$

$$= \frac{V^{2}}{R}$$

$$R = \frac{V}{I}$$

$$= \frac{V^{2}}{W}$$

$$= \frac{W}{I^{2}}$$

$$V = IR$$

$$= \frac{W}{I}$$

$$= \sqrt{WR}$$

$$I = \frac{V}{R}$$

$$= \frac{W}{V}$$

$$= \sqrt{\frac{W}{R}}$$

Workshop Calculation & Science - Spinning Technician Exercise 1.6.18

Trigonometry - Measurement of angles

Introduction:

Trigonometry is the branch of mathematics which deals with the study of measurement and relationship of the three sides and three angles of a triangle.

Units:

Measurement of Angles

There are three systems of measuring the angle:

(i) Sexagesimal System

This is called British System. In this system, one right angle is divided into 90 equal parts which are called degrees. Each part is divided into 60 parts which are called minutes. Each minute is divided into 60 parts which are called seconds. The parts so divided respectively are called:

One degree (1°), one minute (1') and one second (1")

It means 1 right angle = 90° (90 degrees)

1 degree (1°) = 60' (60 minutes)

1 minute (1') = 60" (60 seconds)

In Trigonometry, mostly this system is used.

(ii) Centesimal System

This is called French System. In this system, the right angle is divided into 100 equal parts which are called grades. Each grade is divided into 100 minutes and each minute is divided into 100 seconds.

Parts so divided are respectively called:

One grade (1 g), one minute (1'), one second (1").

It means 1 right angle = 100 grades (100g)

1 grade (1 g) = 100 minutes (100')

1 minute (1') = 100 seconds (100")

90° = 100g (because each is a right angle)

This system is easier than Sexagesimal System. But to use this system many other systems will have to be devised that is why this system is not used.

(iii) Circular System

In this system, the unit of measuring angles is radian. It is that angle which is formed at the centre and is formed of an arc of length equal to radius in a circle.

There is one constant ratio between the circumference and dia of a circle. This is represented by $\,\pi\,.$

 $\frac{1}{1}$ Diameter = constant point = π

Circumference = π x dia

= $2\pi r$ (where r is radius of the circle)

$$\pi = \frac{22}{7}$$

Circumference makes an angle $(2\pi r) = 360^{\circ}$

Radius of the circle makes an angle (r) = 1 Radian

ie:
$$\frac{C}{r} = \frac{360^{\circ}}{1Radian}$$

$$\frac{2\pi r}{r} = \frac{360^{\circ}}{1Radian}$$

$$2\pi = \frac{360^{\circ}}{1\text{Radian}}$$

 2π Radian = 360°

 π Radian = 180°

1 Radian =
$$\frac{180^{\circ}}{\pi}$$

$$1^{\circ} = \frac{\pi}{180^{\circ}}$$
 Radian

Examples

1 Convert 45°36'20" into degree and decimal of degree.

60 seconds = 1 minute

20 seconds =
$$\frac{20}{60}$$
 = 0.333'

60 minutes = 1 degree

$$36.333 \text{ minutes} = \frac{36.333}{60} = 0.606^{\circ}$$

$$45^{\circ}36'20" = 45.606^{\circ}$$

2 Convert 24.59° into degree, minute and second

1 degree = 60 minutes

 $0.59 \text{ degree} = 0.59 \times 60 = 35.4$

1 minute = 60 seconds

0.4 minute = 60 sec x = 0.4

= 24"

Therefore $24.59^{\circ} = 24^{\circ}35'24''$

3 Change 50°37'30" into degrees

By changing angle degrees into decimals

$$30" = \frac{30}{60} = 0.50$$

37'30" = 37.5'

$$37.5' = \frac{37.5}{60} = 0.625^{\circ}$$

 $50^{\circ}37'30" = 50.625^{\circ}$

4 Convert 23°25' 32" into radians

We know $1^{\circ} = 60' = 3600"$

Therefore 23°25'32"

$$= \left(23 + \frac{25}{60} + \frac{32}{3600}\right) \text{ degrees}$$

$$= \frac{82800 + 1500 + 32}{3600}$$

$$= \frac{84332}{3600}$$

But $180^{\circ} = \pi$ radians

Therefore 23.4255 degrees

$$= \frac{23.4255}{180} \pi \text{ radians}$$

$$= \frac{23.4255}{180} \times \frac{22}{7} \text{ radians}$$

5 Convert 87º19' 57" into Radian.

$$19'57'' = 19' + \frac{57''}{60}$$

$$= 19' + 0.95'$$

$$= 19.95'$$

$$87°19.95' = 87° + \frac{19.95'}{60}$$

$$= 87° + 0.332° = 87.33°$$

$$1° = \frac{\pi}{180} \text{ radian}$$

$$87.33° = \frac{\pi}{180} \times 87.33 \text{ radian}$$

$$= 1.524 \text{ radian}$$

6 Convert 67°11'43" into Radian

$$11'43'' = 11' + \frac{43''}{60}$$

$$= 11' + 0.716'$$

$$= 11.72'$$

$$67^{\circ}11.72' = 67^{\circ} + \frac{11.72'}{60}$$

$$= 67^{\circ} + 0.195^{\circ}$$

$$= 67.2^{\circ}$$

$$1^{\circ} = \frac{\pi}{180} \text{ radian}$$

$$67.2^{\circ} = \frac{\pi}{180} \times 67.2 \text{ radian}$$

$$= 1.173 \text{ radian}$$

7 Convert $\frac{4}{7}$ m radian into degrees

1 radian =
$$\frac{180}{\pi}$$
 degree

$$\frac{4}{7}\pi$$
 radian = $\frac{180}{\pi} \times \frac{4}{7}\pi$ degree
= 102.9 degree
= 102° 0.9 x 60'
= 102° 54'

8 Convert 0.8357 radian into degrees

1 radian =
$$\frac{180}{\pi}$$
 degree
0.8357 radian = $\frac{180}{\pi}$ x 0.8357 degree
= 47.88°
= 47° 0.88 x 60'
= 47° 52.80'
= 47° 52'0.8 x 60"
= 47° 52'48"

9 Convert 2.752 radian into degrees

1 Radian =
$$\frac{180}{\pi}$$
 degree
2.7520 radian = $\frac{180}{\pi}$ x 2.752 degree
= 157.7°
= 157.7° x 60'
= 157° 42'

10 Convent $\frac{3}{5}\pi$ radian into degrees

1 Radian =
$$\frac{180}{\pi}$$
 degree
 $\frac{3}{5}\pi$ radian = $\frac{180}{\pi} \times \frac{3}{5}\pi$ degree
= 108°

Assignment

Convert into Degree

1 12 Radian

Convert into Radians

2 78°

3 47020'

4 52°36'45"

5 25°38"

Convert into degree, minute and seconds

6 46.723°

7 68.625°

8 0.1269 Radian

9 2.625 Radians

10 3/5 Radian

Workshop Calculation & Science - Spinning Technician Exercise 1.6.19

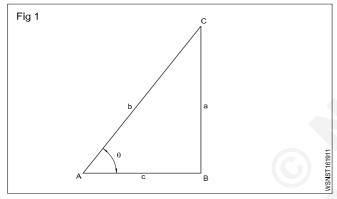
Trigonometry - Trigonometrical ratios

Dependency

The sides of a triangle bear constant ratios for a given definite value of the angle. That is, increase or decrease in the length of the sides will not affect the ratio between them unless the angle is changed. These ratios are trigonometrical ratios. For the given values of the angle a value of the ratios

$$\frac{BC}{AB}$$
, $\frac{AC}{AB}$, $\frac{BC}{AC}$, $\frac{AB}{BC}$, $\frac{AB}{AC}$ and $\frac{AC}{BC}$ do not change even when

the sides AB, BC, AC are increased to AB', BC' and AC' or decreased to AB", BC" and AC".


For the angle

AC is the hypotenuse

AB is the adjacent side

BC is the opposite side.

The ratios

The six ratios between the sides have precise definitions.

Sine
$$\theta = \frac{BC}{AC} = \frac{Opposite \ side}{Hypotenuse} = Sin \theta$$

Cosine
$$\theta = \frac{AB}{AC} = \frac{Adjacent \ side}{Hypotenuse} = Cos \theta$$

$$Tangent \ \theta = \frac{BC}{AB} = \frac{Opposite \ side}{Adjacent \ side} = Tan \ \theta$$

Cosecant
$$\theta = \frac{AC}{BC} = \frac{Hypotenuse}{Opposite side} = Cosec \theta$$

Secant
$$\theta = \frac{AC}{AB} = \frac{Hypotenuse}{Adjacent side} = Sec \theta$$

$$\label{eq:cotangent} \text{Cotangent} \quad \theta = \frac{AB}{BC} = \frac{\text{Adjacent side}}{\text{Opposite side}} = \text{Cot } \theta$$

Relationship between the ratios

$$Cosec \ \theta = \frac{AC}{BC} = \frac{1}{\frac{BC}{AC}} = \frac{1}{\sin \theta}$$

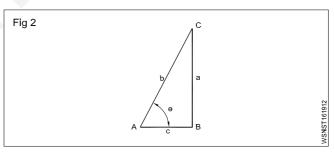
$$sec \ \theta = \frac{AC}{AB} = \frac{1}{\frac{AB}{AC}} = \frac{1}{\cos \theta}$$

$$\cot\theta = \frac{AB}{BC} = \frac{1}{\frac{BC}{AB}} = \frac{1}{\tan\theta}$$

$$\sin \theta = \frac{\text{sideBC}}{\text{sideAC}} = \frac{a}{b}$$

$$\cos \theta = \frac{\text{side AB}}{\text{sideAC}} = \frac{c}{b}$$

$$\frac{\sin \theta}{\cos \theta} = \frac{\frac{a}{b}}{\frac{c}{b}} = \frac{a}{b} \times \frac{b}{c} = \frac{a}{c}$$


$$= \frac{\text{side BC}}{\text{side AB}} = \tan \theta$$

$$\sin \theta = \frac{1}{\cos ec \ \theta} \text{ or cosec } \theta = \frac{1}{\sin \theta} \text{ or } \sin \theta. \text{ cosec } \theta = 1$$

$$\cos \theta = \frac{1}{\sec \theta} \text{ or sec } \theta = \frac{1}{\cos \theta} \text{ or } \cos \theta. \sec \theta = 1$$

$$\tan \theta = \frac{1}{\cot \theta}$$
 or $\cot \theta = \frac{1}{\tan \theta}$ or $\cot \theta \cdot \tan \theta = 1$

By pythogoras theorem we have, $AC^2 = AB^2 + BC^2$

Dividing both sides of the equation by AC2, we have

$$\frac{AC^2}{AC^2} = \frac{AB^2}{AC^2} + \frac{BC^2}{AC^2}$$

$$= \left[\frac{AB}{AC}\right]^2 + \left[\frac{BC}{AC}\right]^2$$

$$1 = (\cos \theta)^2 + (\sin \theta)^2$$

$$\sin^2\theta + \cos^2\theta = 1$$

Sine, Cosine, Tangent, Cosec, Sec and Cotangent are the six trigonometrical ratios

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 and $\sin^2 \theta + \cos^2 \theta = 1$

$$\sin^2\theta + \cos^2\theta = 1$$

It can be transformed as

$$\sin^2\theta = 1 - \cos^2\theta$$

$$\sin \theta = \sqrt{1 - \cos^2 \theta}$$

or
$$\cos^2 \theta = 1 - \sin^2 \theta$$

$$\cos \theta = \sqrt{1 - \sin^2 \theta}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{1 - \cos^2 \theta}}{\cos \theta}$$

$$\tan \theta = \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}}$$

We know $\sin^2 \theta + \cos^2 \theta = 1$

Dividing both sides by $\cos^2 \theta$.

$$\frac{\sin^2\theta}{\cos^2\theta} + \frac{\cos^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$$

or 1 +
$$tan^2\theta = sec^2\theta$$

Using the same equation

$$\sin^2\theta + \cos^2\theta = 1$$
.

Dividing both sides by $\sin^2 \theta$,

$$\frac{\text{Sin}^2\theta}{\text{Sin}^2\theta} + \frac{\text{Cos}^2\theta}{\text{Sin}^2\theta} = \frac{1}{\text{Sin}^2\theta}$$

$$1 + \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{1}{\sin^2 \theta}$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

Trigonometrical Tables

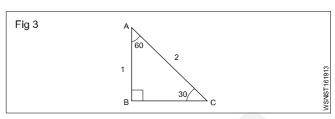
Ratio	0 °	30°	45°	60°	90°
sin θ	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1/2	0
tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	8

When θ increases,

Sine value increases;

Cosine value decreases;

Tangent value increases to more than 1 when the angle is more than 45° (tan60° = 1.732)


Sine of an angle = Cosine of its complementary angle

Cosine of an angle = Sine of its complementary angle

Examples

If $\sin 30^\circ = \frac{1}{2}$ find the value of $\sin 60^\circ$

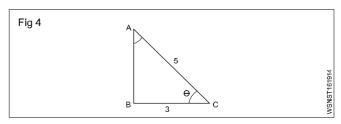
By applying pythagores theorem

$$BC^2 = AC^2 - AB^2$$

$$BC^2 = 2^2 - 1^2$$
$$= 4 - 1$$

$$BC = \sqrt{3}$$

$$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$$


 $\cos\theta = \frac{3}{5}$ Find the other trigonometrical ratios

By applying pythagores theorem

$$AB^{2} = AC^{2} - BC^{2}$$

$$= 5^{2} - 3^{2} = 25 - 9$$

$$= 16$$

AB =
$$\sqrt{16}$$
 = 4

Now
$$\sin\theta = \frac{4}{5}$$

$$\tan \theta = \frac{4}{3}$$

Cosec
$$\theta = \frac{5}{4}$$

$$\sec \theta = \frac{5}{3}$$

$$\cot \theta = \frac{3}{4}$$

Signs of trigonometrical functions for angles more than 90°

Ratio	90 - θ	90 + θ	180 - θ	180 + θ	270 - θ	270 + θ	360 - θ	- θ
sin	cos	cos	sin	- sin	- cos	- cos	- sin	- sin
cos	sin	- sin	- cos	- cos	- sin	sin	cos	cos
tan	cot	- cot	- tan	tan	cot	- cot	- tan	- tan
cosec	sec	sec	cosec	- cosec	- sec	- sec	- cosec	- cosec
sec	cosec	- cosec	- sec	- sec	- cosec	cosec	sec	sec
cot	tan	- tan	- cot	cot	tan	- tan	- cot	- cot

Simplify:

$$\cot \theta + \tan (180+\theta) + \tan(90-\theta) + (\tan 360 - \theta)$$
$$= \cot \theta + \tan \theta - \cot \theta - \tan \theta$$
$$= 0$$

Simplify:

$$\frac{\cos(90+\theta)\sec(-\theta)\tan(180-\theta)}{\sec(360-\theta)\sin(180+\theta)\cos(90-\theta)}$$

$$=\frac{(-\sin\theta)x(\sec\theta)x(-\tan\theta)}{(\sec\theta)x(-\sin\theta)x(-\sin\theta)}$$

$$=\frac{\tan\theta}{\sin\theta} = \frac{1}{\cos\theta} = \sec\theta$$

simplify:

$$\frac{\cos(90^{\circ} + \theta)\sec(-\theta)\tan(180^{\circ} - \theta)}{\sec(360^{\circ} - \theta)\sin(180^{\circ} + \theta)\cot(90^{\circ} - \theta)}$$
$$\cos(90^{\circ} + \theta) = -\sin\theta$$
$$\sec(-\theta) = \sec\theta$$
$$\tan(180^{\circ} - \theta) = -\tan\theta$$

$$sec (360^{\circ} - \theta) = sec \theta$$

$$\sin (180^0 + \theta) = -\sin \theta$$

$$\cot (90^{\circ} + \theta) = - \tan \theta$$

$$\frac{\cos \left(90^{\circ}+\theta\right) \sec \left(-\theta\right) \tan \left(180^{\circ}-\theta\right)}{\sec \left(360^{\circ}-\theta\right) \sin \!\left(180^{\circ}+\theta\right) \cot \!\left(90^{\circ}-\theta\right)}$$

$$=\frac{(-\sin\theta)(\sec\theta)(\tan\theta)}{(\sec\theta)(-\sin\theta)(-\tan\theta)}$$

Simplify:

Cot
$$\theta$$
 + tan (180° + θ) + tan (90° + θ) + tan (360° - θ)

$$\tan (180^{\circ} - \theta) = \tan \theta$$

$$tan (90^0 + \theta) = - \cot \theta$$

$$\tan (360^{\circ} - \theta) = - \tan \theta$$

$$\cot \theta + \tan (180^{\circ} + \theta) + \tan (90^{\circ} + \theta) + \tan (360^{\circ} - \theta)$$

$$\cot \theta + \tan \theta - \cot \theta - \tan \theta = 0$$

Assignment

- 1 Given $\sin 30^\circ = 1/2$, find the value of $\tan 60^\circ$
- 2 If $\cos \theta = 4/5$, find the other radios
- 3 If $\sin A = 3/5$, find $\cos \theta$, $\tan \theta \& \sec \theta$
- 4 If $\tan \theta = 24/7$, find $\sin \theta$ and $\cos \theta$
- 5 Find the value of $\cos \theta$ and $\tan \theta$, if $\sin \theta = 1/2$
- 6 If $\cos \theta = 5/13$, find the value of $\tan \theta$
- 7 If $\sin \theta = 1/2$, find the value of $\sin^2 \theta \cos^2 \theta$

8 What is the value of

$$\frac{\sin^2 30^\circ}{\cos^2 45^\circ} + \frac{\tan 45^\circ}{\sec 60^\circ} - \frac{\sin 60^\circ}{\cot 45^\circ} - \frac{\cos 30^\circ}{\sin 90^\circ}$$

Simplify:

$$2 \quad \frac{\cos(90+\theta) \cdot \sec(-\theta) \cdot \tan(180-\theta)}{\sec(360+\theta) \cdot \sin(180+\theta) \cdot \cot(90+\theta)}$$